Dagstuhl Seminar 23171
Driving HPC Operations With Holistic Monitoring and Operational Data Analytics
( Apr 23 – Apr 28, 2023 )
Permalink
Organizers
- Florina M. Ciorba (Universität Basel, CH)
- Ann Gentile (Sandia National Labs - Albuquerque, US)
- Michael Ott (LRZ - München, DE)
- Torsten Wilde (HPE- Böblingen, DE)
Contact
- Andreas Dolzmann (for scientific matters)
- Jutka Gasiorowski (for administrative matters)
Dagstuhl Reports
As part of the mandatory documentation, participants are asked to submit their talk abstracts, working group results, etc. for publication in our series Dagstuhl Reports via the Dagstuhl Reports Submission System.
- Upload (Use personal credentials as created in DOOR to log in)
Dagstuhl Seminar Wiki
- Dagstuhl Seminar Wiki (Use personal credentials as created in DOOR to log in)
Shared Documents
- Dagstuhl Materials Page (Use personal credentials as created in DOOR to log in)
Advances in analytic approaches have brought the vision of efficient HPC operations enabled by dynamic analysis and automated feedback/adaptation within reach. Many HPC centers have started the development and deployment of frameworks to enable continuous and holistic monitoring, archiving, and analysis of performance data from their production machines and related infrastructures. The impact of such frameworks rests upon the ability to effectively analyze such data. Analytic techniques have been successfully developed and applied in other domains but their features may not apply directly to HPC Operations data and situations. Leveraging, adapting, and extending such techniques would open up new avenues for research and development of actionable analytics that can drive more intelligent operations through both manual and automated response to conditions of interest.
This Dagstuhl Seminar will bring together HPC practitioners in the areas of system management and monitoring and computer science research to collaboratively work on developing community solutions for efficient HPC system operations. The topics to be discussed in this seminar range from use cases to data and analytic approaches required to address them, to ultimately using the results of analyses to improve performance, operations, and research, both with and without human-in-the-loop. Specifically, the topics to be discussed will include:
- Center-specific urgent use cases that drive data collection, analysis, and response requirements across the variety of institutions represented.
- Types of available data, including sources, meanings, and fidelities, to support continuous analyses.
- Requirements for actionable analytics: What do we need to convert raw data into information upon which we can act (e.g., confidence measures, explainability requirements not inherent in AI approaches, representation of results, latency, etc.)?
- Applicability of existing analytics and informatics approaches to the domain-specifics of HPC operations. While there are many promising ML/AI approaches in other domains (e.g., image/speech processing, autonomous vehicles), it is not yet clear how many of those apply to the HPC operations and research domains (e.g., the occurrence of rare fault events, discontinuity of inertia-less measurements).
- Opportunities for response involving infrastructure, hardware, system software, and applications. Discussion will include identifying what hooks would be needed to be added to existing system components (e.g., hardware, firmware, system software, application software) to support automated response.

- Francieli Boito (INRIA - Bordeaux, FR) [dblp]
- Jim Brandt (Sandia National Labs - Albuquerque, US) [dblp]
- Valeria Cardellini (University of Rome "Tor Vergata", IT) [dblp]
- Philip Carns (Argonne National Laboratory, US) [dblp]
- Florina M. Ciorba (Universität Basel, CH) [dblp]
- Isaías Alberto Comprés Ureña (TU München - Garching, DE) [dblp]
- Thaleia Dimitra Doudali (IMDEA Software Institute - Madrid, ES) [dblp]
- Hilary Egan (NREL - Golden, US)
- Ahmed Eleliemy (Universität Basel, CH)
- Ann Gentile (Sandia National Labs - Albuquerque, US) [dblp]
- Taylor Groves (Lawrence Berkeley National Laboratory, US) [dblp]
- Thomas Gruber (Universität Erlangen-Nürnberg, DE)
- Jeff Hanson (HPE - Lakewood, US)
- Utz-Uwe Haus (HPE HPC/AI EMEA Research Lab - Wallisellen, CH) [dblp]
- Esa Heiskanen (CSC Ltd. - Kajaani, FI)
- Kevin A Huck (University of Oregon - Eugene, US) [dblp]
- Thomas Ilsche (TU Dresden, DE) [dblp]
- Thomas Jakobsche (Universität Basel, CH) [dblp]
- Terry Jones (Oak Ridge National Laboratory, US) [dblp]
- Sven Karlsson (Technical University of Denmark - Lyngby, DK) [dblp]
- Allen D. Malony (University of Oregon - Eugene, US) [dblp]
- Henrique Mendonça (CSCS - Lugano, CH)
- Abdullah Mueen (University of New Mexico, US) [dblp]
- Michael Ott (LRZ - München, DE) [dblp]
- Tapasya Patki (LLNL - Livermore, US) [dblp]
- Ivy Bo Peng (KTH Royal Institute of Technology - Stockholm, SE) [dblp]
- Krishnan Raghavan (Argonne National Laboratory, US) [dblp]
- David Schibeci (Pawsey Supercomputing Centre - Kensington, AU)
- Kathleen Shoga (LLNL - Livermore, US) [dblp]
- Michael Showerman (University of Illinois at Urbana-Champaign, US) [dblp]
- Frédéric Suter (Oak Ridge National Laboratory, US) [dblp]
- Oriol Vidal (Barcelona Supercomputing Center, ES) [dblp]
- Torsten Wilde (HPE- Böblingen, DE) [dblp]
- Keiji Yamamoto (RIKEN - Hyogo, JP) [dblp]
- Devesh Tiwari (Northeastern University - Boston, US) [dblp]
Classification
- Distributed / Parallel / and Cluster Computing
- Machine Learning
- Performance
Keywords
- Exascale system monitoring
- Data center monitoring
- Operational Data Analytics
- HPC operations and research