Search the Dagstuhl Website
Looking for information on the websites of the individual seminars? - Then please:
Not found what you are looking for? - Some of our services have separate websites, each with its own search option. Please check the following list:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Within this website:
External resources:
  • DOOR (for registering your stay at Dagstuhl)
  • DOSA (for proposing future Dagstuhl Seminars or Dagstuhl Perspectives Workshops)
Within this website:
External resources:
Within this website:
External resources:
  • the dblp Computer Science Bibliography

Dagstuhl Seminar 24281

Dynamic Traffic Models in Transportation Science

( Jul 07 – Jul 12, 2024 )

Please use the following short url to reference this page:



Dagstuhl Seminar Wiki

Shared Documents

  • Upload (Use personal credentials as created in DOOR to log in)


Traffic assignment models are crucial for traffic planners to be able to predict traffic distributions, especially, in light of possible changes of the infrastructure, e.g., road constructions, traffic light controls, etc. There is a trend in the transportation community (science as well as industry) to base such predictions on complex computer-based simulations that are capable of resolving many elements of a real transportation system. Moreover, cities worldwide, driven by critical sustainability goals, are developing digital twins of their transportation networks to inform the design and the operations of these intricate networks. On the other hand, the theory of dynamic traffic assignments in terms of equilibrium existence, computability and efficiency, has not matured to the point matching the model complexity inherent in simulations.

This Dagstuhl Seminar, which is the fourth in a row on this topic, aims at bringing together leading scientists in the areas traffic simulations, algorithmic game theory (AGT), and dynamic traffic assignment (DTA), as well as applied researches from industry. In the seminar, we will tackle on one hand important open research problems that were identified in past seminars and on the other hand new questions motivated from recent developments. We will particularly address the following topics:

Sustainable traveler and vehicular fleet behavior in dynamic networks. Travelers and vehicular fleet operators are increasingly aware and responsive to the sustainability impact of their travel choices. While this is already incorporated in transportation science models and industrial offers, their theoretical understanding needs to be improved.

Computation of approximate equilibrium solutions. Practitioners still attempt, and in many cases are required, to compute (approximate) equilibrium solutions. We aim to bridge the gap between AGT and transportation practitioners by addressing questions in the flavor of how can AGT frameworks to compute equilibria be used to enhance the computation of simulation- based equilibria.

Dynamics at urban intersections. Arguably, the most critical differentiator between DTA models and simulation-based models is the description of vehicular dynamics at intersections. By improving the understanding of these dynamics, we aim to tie a closer connection between analytical dynamic traffic equilibria and their approximate simulation-based counterparts.

Electric urban mobility. The current premise in transportation practice is that we observer a change towards electric mobility. In the seminar we aim to understand the mathematical and algorithmic challenges that are specific to the electric setting, and to advance the formulation of algorithmic frameworks to tackle this problem.

Copyright José R. Correa, Carolina Osorio, Laura Vargas Koch, and David Watling


Related Seminars
  • Dagstuhl Seminar 15412: Dynamic Traffic Models in Transportation Science (2015-10-04 - 2015-10-09) (Details)
  • Dagstuhl Seminar 18102: Dynamic Traffic Models in Transportation Science (2018-03-04 - 2018-03-09) (Details)
  • Dagstuhl Seminar 22192: Dynamic Traffic Models in Transportation Science (2022-05-08 - 2022-05-13) (Details)

  • Computational Engineering / Finance / and Science
  • Computer Science and Game Theory
  • Multiagent Systems

  • Dynamic equilibria
  • Dynamic traffic assignments
  • Traffic simulation
  • dynamic network flow theory
  • energy aware DTA