Search the Dagstuhl Website
Looking for information on the websites of the individual seminars? - Then please:
Not found what you are looking for? - Some of our services have separate websites, each with its own search option. Please check the following list:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Within this website:
External resources:
  • DOOR (for registering your stay at Dagstuhl)
  • DOSA (for proposing future Dagstuhl Seminars or Dagstuhl Perspectives Workshops)
Within this website:
External resources:
Within this website:
External resources:
  • the dblp Computer Science Bibliography

Dagstuhl Seminar 23491

Scalable Graph Mining and Learning

( Dec 03 – Dec 08, 2023 )

Please use the following short url to reference this page:




Graphs (networks) arise as a natural representation of complex systems across the sciences, e.g., social networks in computational social science, sensor networks in telecommunications, regulatory networks in genetics, functional brain networks in neuroimaging, and meshed surfaces in computer graphics and scientific computing. In many of these applications, graphs are large, complex, and dynamic (e.g., online social networks), which makes them a natural target for graph mining and machine learning (including deep learning) techniques.

Graph mining and learning are sub-disciplines of data mining and machine learning that are concerned with mining, learning and modeling the complex relational structure of data. The remarkable success of deep learning (also called representation or feature learning) in computer vision, natural language processing, and speech recognition has recently increased the interest in the application of deep learning in relational domains. This led to a surge of methods that focus on graph representation learning, where the goal is to learn a mapping that embeds nodes, edges, subgraphs, or entire graphs, as points in a latent low-dimensional vector space. Although the demand for scalable techniques for such methods is increasing in many real-world applications, most graph mining and learning techniques are resource-intensive, since scalability has not been a massive research focus in these areas yet.

Scalable analysis of graphs has been the subject of many recent research efforts, in particular in algorithm engineering (AE) and combinatorial scientific computing (CSC). With a focus on high performance, these communities enabled much larger graphs to be processed in a shorter amount of time. We expect attendees from AE and CSC to share their expertise on processing and analyzing large-scale graph data efficiently, e.g., with parallel and distributed computing techniques as well sophisticated algorithmic methods and data structures.

To summarize, this Dagstuhl Seminar aims at narrowing the gap between (i) researchers from AE and CSC who focus primarily on scalable graph algorithms and on how to implement them on parallel and distributed platforms, as well as (ii) researchers from the areas of graph mining and learning with a strong interest in algorithmic and scalability aspects. The participants from graph mining and learning also represent the domain expertise in real-world applications to a large extent, whereas the graph algorithms experts shall contribute expertise in high-performance algorithms and tools that address real-life graph problems. Our main high-level goal for the seminar is to discuss and achieve the synergies that become possible from bringing the two fields closer together.

Copyright Nesreen K. Ahmed, Danai Koutra, Henning Meyerhenke, and Ilya Safro

Related Seminars
  • Dagstuhl Seminar 14461: High-performance Graph Algorithms and Applications in Computational Science (2014-11-09 - 2014-11-14) (Details)
  • Dagstuhl Seminar 18241: High-Performance Graph Algorithms (2018-06-10 - 2018-06-15) (Details)

  • Data Structures and Algorithms
  • Distributed / Parallel / and Cluster Computing
  • Machine Learning

  • Graph mining
  • graph machine learning
  • (hyper)graph and network algorithms
  • high-performance computing for graphs
  • algorithm engineering for graphs