December 16 – 21 , 2018, Dagstuhl Seminar 18511

Algebraic Coding Theory for Networks, Storage, and Security


Martin Bossert (Universität Ulm, DE)
Eimear Byrne (University College Dublin, IE)
Antonia Wachter-Zeh (TU München, DE)

For support, please contact

Susanne Bach-Bernhard for administrative matters

Michael Gerke for scientific matters


Dagstuhl Seminar Schedule (Upload here)

(Use seminar number and access code to log in)


The main aim of coding theory is to ensure reliable data transmission and data storage. Data is encoded, introducing redundancy, which is required for resilience to errors, malicious interference and packet loss. In addition, code-based cryptography can ensure privacy of the data and provide a means for authentication of the users.

The purpose of this Dagstuhl Seminar is bringing together young and experienced researchers with backgrounds in coding theory, network coding, storage coding and code-based security. The discussions will address similarities and differences between the various methods for the three applications (network coding, storage coding, security).

A major paradigm shift in coding theory occurred with the advent of network coding. The seminal work of Ahlswede et al in 2000 has shown that in order to reach network capacity, the transmitted data packets must be algebraically combined at intermediate nodes of the network. The unpredictability and/or complex topology of networks means that traditional coding methods must be drastically revised to be effective. Rank-metric codes have proved to offer many solutions in the network coding domain, both for error propagation control and wire-tap protection. Coded caching techniques, exploiting low congestion periods of data traffic and local storage hubs point to vast potential in content delivery services for large files such as multi-media.

In Today’s era of cloud and distributed storage, a central problem is how to efficiently maintain reliable storage of data. In multi-disk systems, if a disk fails, data must be recoverable from the remaining stored data, to provide reliability. On one hand it is empirically clear that disk failure is the norm rather than an exception, so that redundancy is a current storage requirement; on the other hand, the sheer scale of data involved means that redundancy must be added as efficiently as possible. To minimize the overhead required to ensure a certain reliability, it is proposed that data should be stored redundantly by employing coding.

An important aspect of user access in distributed storage is private information retrieval so that users who are remotely accessing files can do so without storage servers knowing what they have accessed. Attempts to efficiently solve this problem come from coding theory and combinatorics.

Privacy and security are a major challenge in our modern connected world. Schemes that address the confidentiality of messages as well as the integrity of the data are required. Public-key cryptography is the foundation of multi-party communication as well as for key exchange of symmetric cryptosystems. With the threat of a capable quantum computer, post-quantum secure systems have recently turned into the research focus, especially for devices that are hard to update and have very long-life cycles. As soon as a quantum computer will become available, traditional public-key cryptosystems such as RSA will become insecure. Code-based cryptography provides post-quantum secure public-key systems.

  Creative Commons BY 3.0 DE
  Martin Bossert, Eimear Byrne, and Antonia Wachter-Zeh

Dagstuhl Seminar Series


  • Data Structures / Algorithms / Complexity
  • Networks
  • Security / Cryptology


  • Distributed storage
  • Network coding
  • Coding theory
  • Cryptography
  • Privacy

Book exhibition

Books from the participants of the current Seminar 

Book exhibition in the library, ground floor, during the seminar week.


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.

NSF young researcher support