October 10 – 15 , 2021, Dagstuhl Seminar 21411

Machine Learning in Sports


Ulf Brefeld (Universität Lüneburg, DE)
Jesse Davis (KU Leuven, BE)
Martin Lames (TU München, DE)
Jim Little (University of British Columbia – Vancouver, CA)

For support, please contact

Simone Schilke for administrative matters

Shida Kunz for scientific matters

Dagstuhl Reports

As part of the mandatory documentation, participants are asked to submit their talk abstracts, working group results, etc. for publication in our series Dagstuhl Reports via the Dagstuhl Reports Submission System.


List of Participants
Shared Documents
Dagstuhl Seminar Wiki

(Use personal credentials as created in DOOR to log in)


Advances in data collection techniques have enabled collecting large amounts of data about sports such as event data (e.g., time and locations of actions), tracking data (i.e., positional data), and athlete monitoring (e.g., bio-sensors, IMUs, GPS). These data are commonly and widely collected across multiple different sports. Even recreational athletes make use of a variety of sensors to monitor their training and performances. The advent of such data raises the need to exploit the collected data both from the theoretical (e.g., sports modeling) as well as practical (e.g., training in top level sports) perspective. Problem-solving solutions can be provided by an interaction between the sports science & informatics (S&I) and the machine learning (ML) communities. Machine learning is emerging as a powerful, new paradigm for sports analytics, as it provides novel approaches to making sense of the collected data. However, the S&I and ML communities are traditionally separate, each with its own agenda. The Dagstuhl Seminar aims to bring together top researchers and practitioners who are active in these two fields that can contribute to an assessment of their potential synergies.

The seminar aims to discuss the following key questions: (i) What challenges arise when analyzing new, and massive amounts of data that are available about sports? (ii) What are the key open problems that require a combination of sports science and machine learning know-how to solve? (iii) How can we best facilitate interaction among computer scientists, sports scientists, and end-users? (iv) How can we foster interdisciplinary collaborations on a regular basis? We plan to discuss these questions along different dimensions, such as different types of data, tactics and strategy, player actions, athlete monitoring, and privacy/dual-use.

The goal of the seminar will be to identify key challenges and opportunities that arise when combining computer science and sport science: joint research can lead to synergies that, ultimately, form the basis for breakthroughs and the connections and ideas formed during the seminar ideally lead to future research projects or publications dealing with interdisciplinary research on making sense of data in sports.

Motivation text license
  Creative Commons BY 3.0 DE
  Ulf Brefeld, Jesse Davis, Martin Lames, and Jim Little

Dagstuhl Seminar Series


  • Artificial Intelligence / Robotics
  • Computer Graphics / Computer Vision


  • Sports
  • Machine learning
  • Computer vision
  • Sensors


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.