November 15 – 20 , 2020, Dagstuhl Seminar 20472

CANCELLED Estimation-of-Distribution Algorithms: Theory and Applications

Due to the Covid-19 pandemic, this seminar was cancelled. A related Dagstuhl Seminar was scheduled to May 1 – 6 , 2022 – Seminar 22182.


Josu Ceberio Uribe (University of the Basque Country – Donostia, ES)
Benjamin Doerr (Ecole Polytechnique – Palaiseau, FR)
Fernando Lobo (University of Algarve, PT)
Carsten Witt (Technical University of Denmark – Lyngby, DK)

For support, please contact

Annette Beyer for administrative matters

Shida Kunz for scientific matters


Estimation-of-distribution algorithms (EDAs) are a relatively recent type of randomized optimization heuristics that iteratively develop a probabilistic model of good solutions in the underlying search space. They thus differ from classical randomized heuristics such as local search, simulated annealing, or genetic algorithms in that they are not restricted to sets of search points as the only mean of carrying information from one iteration to the next. EDAs are successfully applied in various engineering areas. In the last five years, they received increasing attention also in theoretical research, pointing out critical influences of their main parameters and rigorously demonstrating situations in which EDAs are superior to many classical approaches, among others, in leaving local optima and in dealing with noise. So far almost all theoretical efforts in EDAs have been done for understanding univariate probabilistic models. The benefits of EDAs, however, are likely to stand out even more if one considers multivariate EDAs, which empirically have been shown to outperform classical evolutionary algorithms on several classes of problems where learning dependencies among decision variables reveals itself to be crucial.

The purpose of this Dagstuhl seminar is to bring together researchers from the theory and the applications of EDAs. In a small number of survey talks, they will summarize the state of the art in the sub-disciplines with significant recent progress. There will also be a small number of talks discussing in depth recent breakthrough results. A large proportion of the time will be devoted to discussions, both plenary and in small groups. In these, we shall try to clarify how the recent theoretical findings can be used to make EDAs more successful in practice, what experience in practice would be worth making rigorous via theoretical works, and what are the most interesting directions for future research, ideally via combined theoretical and applied approaches.

Motivation text license
  Creative Commons BY 3.0 DE
  Josu Ceberio Uribe, Benjamin Doerr, Fernando Lobo, and Carsten Witt

Related Dagstuhl Seminar


  • Artificial Intelligence
  • Data Structures And Algorithms
  • Neural And Evolutionary Computing


  • Heuristic search and optimization
  • Estimation-of-distribution algorithms
  • Probabilistic model building
  • Machine learning


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.