June 26 – July 1 , 2016, Dagstuhl Seminar 16261

Integration of Expert Knowledge for Interpretable Models in Biomedical Data Analysis


Gyan Bhanot (Rutgers University – Piscataway, US)
Michael Biehl (University of Groningen, NL)
Thomas Villmann (Hochschule Mittweida, DE)
Dietlind Zühlke (Seven Principles AG – Köln, DE)

For support, please contact

Dagstuhl Service Team


Dagstuhl Report, Volume 6, Issue 6 Dagstuhl Report
Aims & Scope
List of Participants
Dagstuhl's Impact: Documents available
Dagstuhl Seminar Schedule [pdf]

Press Room


The participants were drawn from three distinct disciplines: Biomedical Research, Machine Learning and Visualizations. On the first day, three overview talks on different aspects of bio-medical research were presented, including an overview of omics and clinical data and databases, a summary of current problems in cancer prognosis and metastasis, and steroid metabolomics and its relevance to disease. On the next two days, there were four overview talks on computer science topics, including machine learning, modeling and visualization. Participants also had the opportunity to give shorter presentations of their current research areas and describe open problems, as well as introduce new and relevant datasets and methods. In total, 16 such short talks were presented, covering various areas of biomedical research and computer science. All talks served as starting points for extensive plenary and individual evening and after dinner discussions about the integration of expert knowledge into data analysis and modeling, specifically targeted to cancer informatics. From these discussions, it was clear that there was an urgent need for interactive collaboration to foster successful analysis and interpretation of biomedical data and the success of such collaboration would hinge on active participation from domain experts from biomedical research, data mining and visualization.

Motivated by this conclusion, we identified a joint project in cancer genomics, which would exploit the expertise represented by the seminar participants. On the fourth day, participants discussed the interactive methodology we will follow in the project. Following this, first results obtained by analysis of cancer data from The Cancer Genome Atlas was presented in a joint talk by representatives from all three disciplines (biology, machine learning, visualization). We will extend this project further in the coming months with active participation from the clinicians and computer scientists. The goal of this effort is not just to solve a relevant and outstanding problem in cancer biology but also to work towards publication of our findings in a high-impact journal authored by all participants. To foster this project, we will establish a Wiki, which will serve as a platform for collaboration and communication.

The participants gave feedback on Friday on the organization and content of the seminar. All participants were appreciative of the open, friendly and constructive atmosphere that made learning and insight possible for experts from very diverse disciplines. Getting to know the basic methods used in each field was seen as the perfect starting point for future collaborations. The idea of a joined wiki page as a collaboration platform as well as the already started joined project were highlighted as especially important. Follow-up-meetings of newly formed interdisciplinary teams were initiated and planned e.g. one in Copenhagen. The participants were very enthusiastic about having a further meeting after about a year to discuss results and new directions resulting from the joint project initiated here. Apart from working on a specific project in cancer biology, the goal of the collaboration is to establish a methodology for interactions, disseminate ideas and protocols among the disciplines and establish a common language to foster understanding.

In summary, biologists, both medical and computational experts in the seminar are enthusiastic about joining forces to solve outstanding problems in understanding biological processes. Many of the machine learning methods presented by participants are ready to be applied in real environments such as in clinical use or in research laboratories, after proper technology transfer. Such technology transfer requires targeted funding and agreed upon protocols to ensure adequate resources and necessary quality control, for subsequent release to the community.

The participants felt that influential members in each community should seek opportunities and avenues to urge the appropriate agencies (NIH, NFS, EU Scientific bodies) to establish a targeted program for technology transfer of computational solutions to challenges in the interpretation of biomedical data. Such a program would solicit competitive funding proposals from groups consisting of both biomedical and computational experts, and require products that are rigorously demonstrated on real problems, as well as satisfy appropriate coding and user interface standards, and where appropriate, satisfy requirements of interfacing or integration with existing established systems currently in use by the community.

In medicine the data is treasure
Whose value's beyond any measure
But it is not surprising
That without analysing
Acquisition is meaningless pleasure
(Michael Biehl and Gyan Bhanot)

Summary text license
  Creative Commons BY 3.0 Unported license
  Gyan Bhanot, Michael Biehl, Thomas Villmann, and Dietlind Zühlke


  • Bioinformatics
  • Data Structures / Algorithms / Complexity
  • Soft Computing / Evolutionary Algorithms


  • Biomedical data analysis
  • Knowledge integration
  • Expert interactions
  • Feature selection and dimensionality reduction
  • Modeling
  • Data visualization


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.