26. – 31. März 2023, Dagstuhl-Seminar 23132

AI-Augmented Facilities: Bridging Experiment and Simulation with ML


Peer-Timo Bremer (LLNL – Livermore, US)
Michael Bussmann (Helmholtz-Zentrum Dresden-Rossendorf – Görlitz, DE)
Tom Gibbs (NVIDIA Corp. – Santa Clara, US)
Brian Spears (LLNL – Livermore, US)

Auskunft zu diesem Dagstuhl-Seminar erteilen

Simone Schilke zu administrativen Fragen

Michael Gerke zu wissenschaftlichen Fragen


Programm des Dagstuhl-Seminars (Hochladen)

(Zum Einloggen bitte persönliche DOOR-Zugangsdaten verwenden)


Recent advances in technology have enabled tremendous progress in experimental and computational science as well as their corresponding large-scale facilities. However, the connection between state-of-the-art predictive computation and world-class experimentation remains slow, often taking weeks or months to use data from each setting to guide the other. Modern scientific investigation needs a far stronger integration between these areas to enable a more efficient, faster, and more flexible process. In this context, recent advances in machine learning and computer science promise to enable an unprecedented convergence of traditionally disparate branches of science and technology. In particular, various application areas have already expressed the vision of a fully integrated, self-driving facility in which ongoing experiments are immediately processed on resources at the edge, automatically coupled to matching simulations at affiliated HPC centers, and promptly adjusted to achieve maximal impact. However, while the technical capacity for this vision likely exists today, initial examples are largely driven by heroic efforts of individual projects and limited to highly specific use cases. These teams invariably are struggling to solve the corresponding challenges in isolation all the while likely duplicating efforts from other areas.

This Dagstuhl Seminar will bring together a diverse set of stakeholders from the various relevant areas – experimental and computational scientists, experts on edge and HPC computing, and machine learning and computer science researchers – to jointly develop a strategic vision on how to move towards AI-augmented facilities in a unified manner. This will include a range of different application areas from high energy density physics to life sciences and additive manufacturing that all depend on large-scale experimental and computing facilities that could greatly benefit from a more automated and integrated approach.

Motivation text license
  Creative Commons BY 4.0
  Peer-Timo Bremer, Michael Bussmann, Tom Gibbs, and Brian Spears


  • Computational Engineering / Finance / And Science
  • Distributed / Parallel / And Cluster Computing
  • Machine Learning


  • Machine learning
  • HPC
  • Edge
  • Experimental facilities


In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.


Download Übersichtsflyer (PDF).

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.


Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.