TOP
Suche auf der Schloss Dagstuhl Webseite
Sie suchen nach Informationen auf den Webseiten der einzelnen Seminare? - Dann:
Nicht fündig geworden? - Einige unserer Dienste laufen auf separaten Webseiten mit jeweils eigener Suche. Bitte beachten Sie folgende Liste:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Seminare
Innerhalb dieser Seite:
Externe Seiten:
  • DOOR (zum Registrieren eines Dagstuhl Aufenthaltes)
  • DOSA (zum Beantragen künftiger Dagstuhl Seminare oder Dagstuhl Perspektiven Workshops)
Publishing
Innerhalb dieser Seite:
Externe Seiten:
dblp
Innerhalb dieser Seite:
Externe Seiten:
  • die Informatik-Bibliographiedatenbank dblp


Dagstuhl-Seminar 26292

Analysis of Algorithms Beyond the Worst Case

( 12. Jul – 17. Jul, 2026 )

Permalink
Bitte benutzen Sie folgende Kurz-Url zum Verlinken dieser Seite: https://www.dagstuhl.de/26292

Organisatoren
  • Anupam Gupta (New York University, US)
  • Sophie Huiberts (CNRS - Aubière, FR)
  • Bodo Manthey (University of Twente, NL)
  • Heiko Röglin (Universität Bonn, DE)

Kontakt

Motivation

The theory of algorithms has traditionally focused on worst-case analysis. This focus has led to both a deep theory and many beautiful and useful algorithms. There are, however, a number of important problems and algorithms for which worst-case analysis does not provide useful or empirically accurate results. For example, worst-case analysis suggests that the simplex method is an exponential-time algorithm for linear programming, while in fact it runs in near-linear time on almost all inputs of interest. Worst-case analysis ranks all deterministic caching algorithms equally, while in almost all applications some algorithms (like least-recently-used) are consistently superior to others (like first-in-first-out).

The problem is that worst-case analysis does not take into consideration that worst-case inputs are often rather contrived and occur hardly ever in practical applications. It led to the situation that for many problems the classical theory is not able to classify algorithms meaningfully according to their performance. Even worse, for some important problems, it recommends algorithms that perform badly in practice over algorithms that work well in practice only because the artificial worst-case performance of the latter ones is bad.

Over the past two decades, a paradigm shift towards a more realistic and robust algorithmic theory has been initiated. The development of a more realistic theory hinges on finding models that measure the performance of an algorithm not only by its worst-case behavior but rather by its behavior on typical inputs. This led to the field of beyond worst-case analysis with several influential models and results over the past years. In this Dagstuhl Seminar, we will bring together leading experts in this research field to foster collaborations and to identify further research directions.

Copyright Anupam Gupta, Sophie Huiberts, Bodo Manthey, and Heiko Röglin

LZI Junior Researchers

This seminar qualifies for Dagstuhl's LZI Junior Researchers program. Schloss Dagstuhl wishes to enable the participation of junior scientists with a specialisation fitting for this Dagstuhl Seminar, even if they are not on the radar of the organizers. Applications by outstanding junior scientists are possible until December 12, 2025.


Verwandte Seminare
  • Dagstuhl-Seminar 14372: Analysis of Algorithms Beyond the Worst Case (2014-09-07 - 2014-09-12) (Details)

Klassifikation
  • Data Structures and Algorithms

Schlagworte
  • analysis of algorithms
  • smoothed analysis
  • algorithms with predictions
  • beyond worst-case analysis
  • semi-random models