TOP
Suche auf der Schloss Dagstuhl Webseite
Sie suchen nach Informationen auf den Webseiten der einzelnen Seminare? - Dann:
Nicht fündig geworden? - Einige unserer Dienste laufen auf separaten Webseiten mit jeweils eigener Suche. Bitte beachten Sie folgende Liste:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Seminare
Innerhalb dieser Seite:
Externe Seiten:
  • DOOR (zum Registrieren eines Dagstuhl Aufenthaltes)
  • DOSA (zum Beantragen künftiger Dagstuhl Seminare oder Dagstuhl Perspektiven Workshops)
Publishing
Innerhalb dieser Seite:
Externe Seiten:
dblp
Innerhalb dieser Seite:
Externe Seiten:
  • die Informatik-Bibliographiedatenbank dblp


Dagstuhl-Seminar 26052

Arithmetical and Modal mu-Calculi: Recent and Future Advances

( 25. Jan – 30. Jan, 2026 )

Permalink
Bitte benutzen Sie folgende Kurz-Url zum Verlinken dieser Seite: https://www.dagstuhl.de/26052

Organisatoren
  • Bahareh Afshari (University of Gothenburg, SE)
  • Juan P. Aguilera (TU Wien, AT)
  • Dexter Kozen (Cornell University - Ithaca, US)

Kontakt

Motivation

Mu-calculi are logical systems for reasoning about inductive and co-inductive constructions. They link a number of important fields in mathematics and theoretical computer science: arithmetic, recursion theory, temporal and spatial logics, topology, infinite games, descriptive set theory, and automata theory. The purpose of this Dagstuhl Seminar is to bring together experts from these fields to discuss connections and encourage new avenues of interdisciplinary collaboration.

The modal mu-calculus is a decidable logic with high expressive power, able to simulate a broad collection of temporal and spatial logics of interest for applications. The contrast of high expressivity and low complexity makes its study challenging. Its proof theory, for instance, relies on ill-founded infinitary proofs and appeals to the determinacy of infinite games.

The arithmetical mu-calculus, although similar in spirit to the modal mu-calculus, is set apart by its undecidability and non-recursive expressive power. The language of the arithmetical mu-calculus is powerful enough to define winning strategies for infinite games in low levels of the Borel hierarchy, for example parity games, notably utilized for decidability proofs in automata theory (e.g., Rabin’s theorem). Moreover, results from reverse mathematics demonstrate that indeed such expressive power is crucial to these decidability proofs.

Various notable recent developments have motivated this Dagstuhl Seminar. These include topological developments in mu-calculus, non-classical generalizations of temporal and spatial logics, descriptive set theoretic considerations on the existence of winning strategies for infinite games, and decidability results for sophisticated automata.

Copyright Bahareh Afshari, Juan P. Aguilera, and Dexter Kozen

Klassifikation
  • Formal Languages and Automata Theory
  • Logic in Computer Science

Schlagworte
  • modal mu-calculus
  • arithmetical mu-calculus
  • cyclic proof
  • provability logic
  • infinite game