Suche auf der Schloss Dagstuhl Webseite
Sie suchen nach Informationen auf den Webseiten der einzelnen Seminare? - Dann:
Nicht fündig geworden? - Einige unserer Dienste laufen auf separaten Webseiten mit jeweils eigener Suche. Bitte beachten Sie folgende Liste:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Innerhalb dieser Seite:
Externe Seiten:
  • DOOR (zum Registrieren eines Dagstuhl Aufenthaltes)
  • DOSA (zum Beantragen künftiger Dagstuhl Seminare oder Dagstuhl Perspektiven Workshops)
Innerhalb dieser Seite:
Externe Seiten:
Innerhalb dieser Seite:
Externe Seiten:
  • die Informatik-Bibliographiedatenbank dblp

Dagstuhl-Seminar 24081

Computational Approaches to Strategy and Tactics in Sports

( 18. Feb – 23. Feb, 2024 )

(zum Vergrößern in der Bildmitte klicken)

Bitte benutzen Sie folgende Kurz-Url zum Verlinken dieser Seite:



Dagstuhl Reports

As part of the mandatory documentation, participants are asked to submit their talk abstracts, working group results, etc. for publication in our series Dagstuhl Reports via the Dagstuhl Reports Submission System.

  • Upload (Use personal credentials as created in DOOR to log in)

Dagstuhl Seminar Wiki

Gemeinsame Dokumente



The past decade has seen a rapid growth in the ability to collect large-scale spatiotemporal data sets about sports. Ideally, such data should be used to inform strategic and tactical decision making. On the one hand, strategy is the long-term planning of training sessions, signing of coaches and athletes, rotation and the plan made before a match/race. On the other hand, tactics are short-term and involve the execution and adaptation to the match/race plan. Having insights into the efficacy and feasibility of strategies and tactics is particularly important and challenging within sports because effective and novel strategy & tactics allow weaker teams or athletes to win against stronger ones. Unfortunately, the size, richness, and complexity of modern spatiotemporal sports data means that automated analysis is essential. Alas, the nature of the data has posed a number of challenges for classic analysis techniques. This has spurred the development of novel statistical and machine learning techniques in order to perform more fine-grained analysis of every action and decision during a competitive event.

In this Dagstuhl Seminar, we aim to bring together sports researchers in academia and industry to understand how they are using machine learning and statistical techniques to analyze strategy and tactics. Understanding, formalizing, discovering, and analyzing strategy & tactics pose a number of key challenges from a computational perspective, which include the following aspects:

  1. From a modeling perspective, what is the best way to represent discovered strategic and tactical concepts?
  2. How can we evaluate the efficacy of different strategies and tactics?
  3. How do you communicate the findings from tactical studies to an interdisciplinary audience?
  4. How can computational approaches be used to support decision making for coaching?
  5. What kind of data and domain knowledge are needed to conduct strategic and tactical studies?

The goal of the seminar is to explore and discuss how we can and should answer these questions.

Copyright Ulf Brefeld, Jesse Davis, Laura de Jong, and Stephanie Kovalchik


Verwandte Seminare
  • Dagstuhl-Seminar 06381: Computer Science in Sport (2006-09-17 - 2006-09-20) (Details)
  • Dagstuhl-Seminar 08372: Computer Science in Sport - Mission and Methods (2008-09-07 - 2008-09-10) (Details)
  • Dagstuhl-Seminar 11271: Computer Science in Sport - Special emphasis: Football (2011-07-03 - 2011-07-06) (Details)
  • Dagstuhl-Seminar 13272: Computer Science in High Performance Sport - Applications and Implications for Professional Coaching (2013-06-30 - 2013-07-03) (Details)
  • Dagstuhl-Seminar 15382: Modeling and Simulation of Sport Games, Sport Movements, and Adaptations to Training (2015-09-13 - 2015-09-16) (Details)
  • Dagstuhl-Seminar 21411: Machine Learning in Sports (2021-10-10 - 2021-10-15) (Details)

  • Artificial Intelligence

  • sports
  • machine learning
  • spatio-temporal data
  • explainability