Suche auf der Schloss Dagstuhl Webseite
Sie suchen nach Informationen auf den Webseiten der einzelnen Seminare? - Dann:
Nicht fündig geworden? - Einige unserer Dienste laufen auf separaten Webseiten mit jeweils eigener Suche. Bitte beachten Sie folgende Liste:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Innerhalb dieser Seite:
Externe Seiten:
  • DOOR (zum Registrieren eines Dagstuhl Aufenthaltes)
  • DOSA (zum Beantragen künftiger Dagstuhl Seminare oder Dagstuhl Perspektiven Workshops)
Innerhalb dieser Seite:
Externe Seiten:
Innerhalb dieser Seite:
Externe Seiten:
  • die Informatik-Bibliographiedatenbank dblp

Dagstuhl-Seminar 23361

Multiobjective Optimization on a Budget

( 03. Sep – 08. Sep, 2023 )

(zum Vergrößern in der Bildmitte klicken)

Bitte benutzen Sie folgende Kurz-Url zum Verlinken dieser Seite:



Dagstuhl Reports

As part of the mandatory documentation, participants are asked to submit their talk abstracts, working group results, etc. for publication in our series Dagstuhl Reports via the Dagstuhl Reports Submission System.

  • Upload (Use personal credentials as created in DOOR to log in)

Dagstuhl Seminar Wiki

Gemeinsame Dokumente



Multiobjective optimization (MO), a discipline within systems science that provides models, theories, and methodologies to address decision-making problems under conflicting objectives, has a myriad of applications in all areas of human activity, ranging from business and management to engineering. The proposed seminar is motivated by the desire to continue to make MO useful to society as it faces complex decision-making problems and experiences limited resources for decision making. Of particular interest are processes that evolve competitively in environments with scarce resources and lead to decision problems that are characterized by multiple, incommensurate, and conflicting objectives, and engage multiple decision-makers.

The Dagstuhl Seminar will focus on three major types of resource limitations: methodological (e.g., number of solution evaluations), technical (e.g., computation time, energy consumption), and human-related (e.g., decision maker availability and responsiveness). The effect of these limitations on optimization and decision-making quality, as well as methods to quantify and mitigate this influence, will be of particular interest. These methods include reduction and decomposition of optimization and decision-making models; representation of solution sets; different types of optimization approaches such as coordination-based, Bayesian, and multi-stage; preference acquisition; and benchmarking of algorithms. Applications within engineering-design optimization, simulation optimization, and experiment-based optimization will serve as motivation.

Following on the tradition of earlier Dagstuhl Seminars on multiobjective optimization, the seminar will be a platform for experts in two main research communities - Evolutionary MO (EMO) and Multiobjective Decision Making (MCDM) - to propose and discuss novel ideas related to modeling, theory, and applications of MO under competitive conditions and limited budgets.

Copyright Richard Allmendinger, Carlos M. Fonseca, Serpil Sayin, and Margaret M. Wiecek


Verwandte Seminare
  • Dagstuhl-Seminar 04461: Practical Approaches to Multi-Objective Optimization (2004-11-07 - 2004-11-12) (Details)
  • Dagstuhl-Seminar 06501: Practical Approaches to Multi-Objective Optimization (2006-12-10 - 2006-12-15) (Details)
  • Dagstuhl-Seminar 09041: Hybrid and Robust Approaches to Multiobjective Optimization (2009-01-18 - 2009-01-23) (Details)
  • Dagstuhl-Seminar 12041: Learning in Multiobjective Optimization (2012-01-22 - 2012-01-27) (Details)
  • Dagstuhl-Seminar 15031: Understanding Complexity in Multiobjective Optimization (2015-01-11 - 2015-01-16) (Details)
  • Dagstuhl-Seminar 18031: Personalized Multiobjective Optimization: An Analytics Perspective (2018-01-14 - 2018-01-19) (Details)
  • Dagstuhl-Seminar 20031: Scalability in Multiobjective Optimization (2020-01-12 - 2020-01-17) (Details)

  • Machine Learning
  • Neural and Evolutionary Computing
  • Systems and Control

  • decision making
  • expensive optimization
  • few-shot learning
  • evolutionary algorithms
  • simulation optimization