https://www.dagstuhl.de/22382

18. – 23. September 2022, Dagstuhl-Seminar 22382

Machine Learning for Science: Bridging Data-driven and Mechanistic Modelling

Organisatoren

Philipp Berens (Universität Tübingen, DE)
Kyle Cranmer (New York University, US)
Neil D. Lawrence (University of Cambridge, GB)
Ulrike von Luxburg (Universität Tübingen, DE)

Auskunft zu diesem Dagstuhl-Seminar erteilen

Susanne Bach-Bernhard zu administrativen Fragen

Michael Gerke zu wissenschaftlichen Fragen

Dokumente

Programm des Dagstuhl-Seminars (Hochladen)

(Zum Einloggen bitte persönliche DOOR-Zugangsdaten verwenden)

Motivation

Machine learning has the potential to transform research and innovation. Today’s machine learning methods are already being applied to advance the frontiers of science, helping researchers better understand how the world around us works – from interactions between atoms, to the ways that proteins fold, interactions between cells, the dynamics of Earth’s systems and the discovery of exoplanets. These contributions are the foothills of the wider transformation that machine learning could bring for science and the scientific workflow.

Recent successes in the deployment of machine learning for scientific discovery point to the potential of a new generation of machine learning methods for science. These tools would combine data-derived insights with existing domain knowledge or theory, creating more powerful analytical tools. They would enhance researchers’ ability to simulate the systems they study, testing new ideas or identifying new areas for investigation; and they would support researchers to understand not only what patterns can be found in data, but why and how such patterns have emerged.

Creating this new generation of machine learning methods requires further efforts to bridge the current gap between data-driven and mechanistic modelling. Recent successes in the field suggest a route to create these hybrid approaches. Through further development of machine learning approaches that encode domain knowledge in data-driven systems, that enable simulation and emulation of complex real-world systems, and that allow causal inference in data-enabled systems, machine learning research could create more powerful tools for scientific discovery.

This Dagstuhl Seminar will seek to articulate a roadmap for bridging the gap between data-driven and mechanistic modelling approaches. It will consider the lessons that recent work at the interface of machine learning and science provides for the future development of the field, and it will review emerging research directions at this interface. In so doing, it will identify a set of common interests where further research could unlock progress in the use of machine learning for scientific discovery.

Machine learning methods have already been successfully adopted in a variety of scientific domains. This seminar will review recent experiences of – and lessons learned from – efforts to deploy machine learning to advance:

  • Healthcare and biomedical sciences including neuroscience
  • Climatology and environmental sciences
  • Theoretical and experimental physics

By reviewing these recent experiences, the seminar will identify emerging research directions and best practices in:

  • Encoding domain knowledge in machine learning systems, reviewing methods for leveraging insights from data while embedding the knowledge contained in mechanistic modelling approaches.
  • Simulation and emulation, investigating how innovations in the mathematics of emulation and techniques for understanding uncertainty propagation can support more effective machine learning tool.
  • Approaches to causality in machine learning, exploring how techniques from statistical inference and uncertainty quantification can be combined to create a new mathematics of causality.

Motivation text license
  Creative Commons BY 4.0
  Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Jessica Montgomery, and Ulrike von Luxburg

Classification

  • Artificial Intelligence
  • Machine Learning

Keywords

  • Machine learning
  • AI
  • Scientific discovery

Dokumentation

In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.

 

Download Übersichtsflyer (PDF).

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.

Publikationen

Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.