15. – 19. August 2022, Dagstuhl-Seminar 22332

Differential Equations and Continuous-Time Deep Learning


David Duvenaud (University of Toronto, CA)
Markus Heinonen (Aalto University, FI)
Michael Tiemann (Robert Bosch GmbH – Renningen, DE)
Max Welling (University of Amsterdam, NL)

Auskunft zu diesem Dagstuhl-Seminar erteilen

Christina Schwarz zu administrativen Fragen

Andreas Dolzmann zu wissenschaftlichen Fragen

Dagstuhl Reports

Wir bitten die Teilnehmer uns bei der notwendigen Dokumentation zu unterstützen und Abstracts zu ihrem Vortrag, Ergebnisse aus Arbeitsgruppen, etc. zur Veröffentlichung in unserer Serie Dagstuhl Reports einzureichen über unser
Dagstuhl Reports Submission System.


Gemeinsame Dokumente
Dagstuhl-Seminar Wiki

(Zum Einloggen bitte persönliche DOOR-Zugangsdaten verwenden)


Deep models have revolutionised machine learning due to their remarkable ability to iteratively construct more and more refined representations of data over the layers. Perhaps unsurprisingly, very deep learning architectures have recently been shown to converge to differential equation models, which are ubiquitous in sciences, but so far overlooked in machine learning. This striking connection opens new avenues of theory and practice of continuous-time machine learning inspired by physical sciences. Simultaneously, neural networks have started to emerge as powerful alternatives to cumbersome mechanistic dynamical systems. Finally, deep learning models in conjecture with stochastic gradient optimisation has been used to numerically solve high-dimensional partial differential equations. Thus, we have entered a new era of continuous-time modelling in machine learning.

This change in perspective is currently gaining interest rapidly across domains and provides an excellent and topical opportunity to bring together experts in dynamical systems, computational science, machine learning and the relevant scientific domains to lay solid foundations of these efforts. On the other hand, as the scientific communities, events and outlets are significantly disjoint, it is key to organize an interdisciplinary event and establish novel communication channels to ensure the distribution of relevant knowledge.

Over the course of this Dagstuhl Seminar, we want to establish strong contacts, communication and collaboration of the different research communities. Let's have an exchange of each community's best practices, known pitfalls and tricks of the trade. We will try to identify the most important open questions and avenues forward to foster interdisciplinary research. To this end, this seminar will feature not only individual contributed talks, but also general discussions and "collaboration bazaars", for which participants will have the possibility to pitch ideas for break-out project sessions to each other. In the break-out sessions, participants may discuss open problems, joint research obstacles, or community building work.

Motivation text license
  Creative Commons BY 4.0
  David Duvenaud, Markus O. Heinonen, Michael Tiemann, and Max Welling


  • Machine Learning
  • Numerical Analysis
  • Systems And Control


  • Differential equations
  • Deep learning


In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.


Download Übersichtsflyer (PDF).

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.


Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.