http://www.dagstuhl.de/17042

22. – 27. Januar 2017, Dagstuhl Seminar 17042

From Characters to Understanding Natural Language (C2NLU): Robust End-to-End Deep Learning for NLP

Organisatoren

Phil Blunsom (University of Oxford, GB)
Kyunghyun Cho (New York University, US)
Chris Dyer (Carnegie Mellon University – Pittsburgh, US)
Hinrich Schütze (LMU München, DE)


1 / 3 >

Auskunft zu diesem Dagstuhl Seminar erteilen

Simone Schilke zu administrativen Fragen

Roswitha Bardohl zu wissenschaftlichen Fragen

Dagstuhl Reports

Wir bitten die Teilnehmer uns bei der notwendigen Dokumentation zu unterstützen und Abstracts zu ihrem Vortrag, Ergebnisse aus Arbeitsgruppen, etc. zur Veröffentlichung in unserer Serie Dagstuhl Reports einzureichen über unser
Dagstuhl Reports Submission System.

Dokumente

Teilnehmerliste
Gemeinsame Dokumente

Motivation

Deep learning is currently one of most active areas of research in machine learning and its applications, including natural language processing (NLP). One hallmark of deep learning is end-to-end learning: all parameters of a deep learning model are optimized directly on the learning objective; e.g., on the objective of accuracy on the binary classification task: is the input image the image of a cat? Crucially, the set of parameters that are optimized includes "first-layer" parameters that connect the raw input representation (e.g., pixels) to the first layer of internal representations of the network (e.g., edge detectors). In contrast, many other machine learning models employ hand-engineered features to take the role of these first-layer parameters.

Even though deep learning has had a number of successes in NLP, research on true end-to-end learning is just beginning to emerge. Most NLP deep learning models still start with a hand-engineered layer of representation, the level of tokens or words, i.e., the input is broken up into units by manually designed tokenization rules. Such rules often fail to capture structure both within tokens (e.g., morphology) and across multiple tokens (e.g., multi-word expressions).

Another problem of token-based end-to-end systems is that they currently have no principled and general way to generate tokens that are not part of the training vocabulary. Since a token is represented as a vocabulary index and parameters governing system behavior affecting this token are referring to this vocabulary index, a token that does not have a vocabulary index cannot easily be generated in end-to-end systems. In contrast, character-based end-to-end systems can generate new vocabulary items, so that -- at least in theory -- they do not have an out-of-vocabulary problem.

Character-based processing is also interesting from a theoretical point of view for linguistics and computational linguistics. We generally assume that the relationship between signifiers (tokens) and the signified (meaning) is arbitrary. There are well-known cases of non-arbitrariness, including onomatopoeia and regularities in names (female vs male first names), but these are usually considered to be exceptions. Character-based approaches can deal much better with such non-arbitrariness than token-based approaches. Thus, if non-arbitrariness is more pervasive than generally assumed, then character-based approaches would have an additional advantage.

Given the success of end-to-end learning in other domains, it is likely that it will also be widely used in NLP to alleviate these issues and lead to great advances. This workshop will bring together an interdisciplinary group of researchers from deep learning, machine learning and computational linguistics to develop a research agenda for end-to-end deep learning applied to natural language.

License
  Creative Commons BY 3.0 DE
  Hinrich Schütze

Classification

  • Artificial Intelligence / Robotics

Keywords

  • Natural language processing
  • Computational linguistics
  • Deep learning
  • Robustness in learning
  • End-to-end learning
  • Machine learning

Buchausstellung

Bücher der Teilnehmer 

Buchausstellung im Erdgeschoss der Bibliothek

(nur in der Veranstaltungswoche).

Dokumentation

In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.

 

Download Übersichtsflyer (PDF).

Publikationen

Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von
Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.