16. – 21. Februar 2014, Dagstuhl Seminar 14081

Robots Learning from Experiences


Anthony G. Cohn (University of Leeds, GB)
Bernd Neumann (Universität Hamburg, DE)
Alessandro Saffiotti (University of Örebro, SE)
Markus Vincze (TU Wien, AT)

Auskunft zu diesem Dagstuhl Seminar erteilt

Dagstuhl Service Team


Dagstuhl Report, Volume 4, Issue 2 Dagstuhl Report
Gemeinsame Dokumente
Dagstuhl Seminar Wiki
Programm des Dagstuhl Seminars [pdf]

(Zum Einloggen bitte Seminarnummer und Zugangscode verwenden)


The ability to exploit experiences is an important asset of intelligent beings. Experiences provide a rich resource for learning, solving problems, avoiding difficulties, predicting the effects of activities, and obtaining commonsense insights. Current robots do not in general possess this ability, and this is a decisive reason for the often perceived "lack of intelligence" of current robotic systems: they repeat mistakes, do not learn to anticipate happenings in their environment, and need detailed instructions for each specific task.

Consider an everyday task of a service robot, such as grasping a cup from a cupboard and bringing it to a person sitting at a table. This task may occur in many variations and under unpredictable circumstances. For example, persons may sit at different sides of a table, a direct path to the table may be blocked, the table may be cluttered with various objects, hot water may be ready or not, the cup on the shelf may be upside-down, etc. It is clearly infeasible to provide the robot with precise instructions for all contingencies at design time or to specify tasks with highly detailed instructions for each particular concrete situation which may arise. Hence without such knowledge, robot behaviour is bound to lack robustness if the robot cannot autonomously adapt to new situations.

How would the robot, for example, avoid pouring coffee into an upside-down cup? Based on experiences with multiple pouring actions, the robot will have formed a conceptualisation of all concomitant circumstances of successful pouring, for example to pour into a "container". The robot may not know the name of this conceptualisation but will know that it must be open on top, hollow, empty, etc. Similarly, the robot may have encountered upside-down objects before and hence be able to conceptualise the corrective action of turning an object to make it a usable container.

This seminar has brought together experts and scholars from the robotics, learning, and knowledge representation communities to discuss current approaches to make robots learn from experiences. Emphasis was on the representation of real-world experiences and on exploiting experiences for autonomous acting in a changing or partially unknown environment.

  Creative Commons BY 3.0 Unported license
  Anthony G. Cohn, Bernd Neumann, Alessandro Saffiotti, and Markus Vincze


  • Artificial Intelligence / Robotics


  • Learning
  • Experiences
  • Cognitive systems


Bücher der Teilnehmer 

Buchausstellung im Erdgeschoss der Bibliothek

(nur in der Veranstaltungswoche).


In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.


Download Übersichtsflyer (PDF).


Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von
Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.