21. – 26. August 2011, Dagstuhl Seminar 11341

Learning in the context of very high dimensional data


Michael Biehl (University of Groningen, NL)
Barbara Hammer (Universität Bielefeld, DE)
Erzsébet Merényi (Rice University – Houston, US)
Alessandro Sperduti (University of Padova, IT)
Thomas Villmann (Hochschule Mittweida, DE)

Auskunft zu diesem Dagstuhl Seminar erteilt

Dagstuhl Service Team


Dagstuhl Report, Volume 1, Issue 8 Dagstuhl Report
Gemeinsame Dokumente


Rapidly increasing sensor technology, greatly enhanced storage capabilities, and dedicated data formats have lead to a dramatic growth of the size of electronic data available today and, even more so, its dimensionality. Examples include diverse formats such as spectral data, micro-\ and macroarrays, biotechnological sequence data, or high resolution digital images. Due to its dimensionality and complexity, these data sets can hardly be addressed by classical statistical methods; nor do standard presentation and visualization tools allow an adequate direct inspection by humans. Thus, the need for efficient and reliable automatic processing and analysis tools for very high dimensional data arises in different areas such as bioinformatics, medicine, multi-band image analysis, robotics, astrophysics, geophysics, etc.

The aim of the seminar was to bring together researchers who develop, investigate, or apply machine learning methods for very high dimensional data to advance this important field of research. The focus was put on broadly applicable methods and processing pipelines which offer efficient solutions for high-dimensional data analysis appropriate for a wide range of application scenarios.

39 experts from 12 different countries joined the seminar, including a good mixture of established scientists and promising young researchers working in the field. Thereby, the special interests of the researchers ranged from dedicated algorithmic design connected to diverse areas such as dimensionality reduction, data visualization, metric learning, functional data analysis, to various application scenarios including diverse areas such as the biomedical domain, hyperspectral image analysis, and natural language processing.

This setup allowed us to discuss salient issues in a way that integrated perspectives from several points of views and scientific approaches, thereby providing valuable new insights and research contacts for the participants. Correspondingly, a wide range of topics was covered during discussions and presentations in the seminar.

Altogether, the seminar opened quite a few perspectives pointing into important research directions in the context of very high dimensional data.


  • Artificial Intelligence
  • Soft Computing


  • Curse of dimensionality
  • Dimensionality reduction
  • Regularization
  • Deep learning
  • Visualization


Bücher der Teilnehmer 

Buchausstellung im Erdgeschoss der Bibliothek

(nur in der Veranstaltungswoche).


In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.


Download Übersichtsflyer (PDF).


Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von
Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.