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General Introduction 
 
In his pioneering work, Jim Gray identified the 4th scientific paradigm, arguing that modern science 
needs computer supported research. Recent developments in many scientific disciplines prove him right: 
Huge amounts of heterogeneous, unstructured and multisource data can now be collected routinely, 
sometimes in a fully automatic manner. Due to the development of computer hardware and sensors 
even new data modalities are readily available. The main difference to the general “big data” hype is 
that in science collecting data always has the intention to gain insights into processes and mechanisms, 
or in general to gain knowledge from data, typically motivated by some hypothesis. So far, the main 
challenge is to manage the explosive growth in size, complexity, and rates of data accumulation. On the 
one hand, it is easy to collect Tera-Bytes of data per minute. On the other hand, analysing even a fraction 
out of it still remains a big problem for scientists, companies and international organizations 
 
A discipline that shows the potential but also the challenges of this 4th scientific paradigm is Ecology. 
 
Ecology is the study of the interactions amongst organisms and with their physical environment. For a 
long time, ecological analyses have been realized locally both with respect to both the geographical and 
phenomenological area of investigation. Today, scientists are interested in quantifying ecological 
relations globally and can consider multiple dimensions of interactions between atmospheric, oceanic, 
and terrestrial processes. Due to the possibilities to record data all over the world, the increase of 
resolution and quality in recordings from, e.g., satellite platforms, and international efforts to document 
the global distribution of biodiversity, increasing availability of heterogeneous data sets via the World 
Wide Web and computing in the cloud, new opportunities arise. These data may enable us to answer 
questions that are of fundamental importance for the future of our planet. In short: ecology is one of 
those sciences, affected in a significant way by the tremendous increase in possibilities to collect and 
analyse data, and there is significant societal interest in taking advantage of these possibilities. 
 
However, usually, scientists in ecology are not completely aware about current trends and new 
techniques in computer science that can support their daily work. Such support could consist in the 
management, integration, and (semi-)automatic analysis of resources, like experimental data, images, 
measurements, in the generation of useful metadata, cloud computing, distributed processing, etc. 
Ecoinformatics is regarded as an important supporting discipline by many ecologists. However, up to 
now, very few computer scientists are involved in this discipline; mostly ecoinformatics (or biodiversity 
informatics) is done by people with a strong background in e.g. ecology and a long (mostly self-taught) 
experience in data management. It lacks a strong connection to cutting-edge computer science research 
in order to profit from the results of this area. On the other hand, computer scientists know too little about 
the domain to be able to offer solutions to relevant problems and to identify potential research avenues.  
 
Over the last few years, all of the authors have been involved in interdisciplinary settings and projects 
bringing together scientists from these different disciplines. The idea for the Dagstuhl seminar is the 



 

 

result of numerous discussions in these projects identifiying the need for such a meeting. We all believe 
that a stronger bond between the disciplines that goes beyond viewing computer science as a “service 
provider” is of vital importance. The aim of the Dagstuhl seminar is to establish such links between 
(geo-)ecologists, ecoinformaticians and computer scientists.  
 
 
 
 
In-depth description 
 
In the following, we will look at the seminar topic from two perspectives. First, from the perspective of 
ecological research: Where would it profit from computer science? And second, from the perspective of 
computer science: where could it support ecological research and gain challenging research questions 
from such a collaboration? We will start with a rather general discussion, but then narrow each topic 
down to one rather specific problem. These specific problems will serve as crystallization points for 
discussions and working groups at the seminar. 
 
One example discipline, where the 4th scientific paradigm may revolutionize the epistemic foundations 
could be ecology:  Ecologists have been collecting data all over the world and organizational scales 
ranging from microscopic processes to global phenomena. For instance, latest developments in 
metagenomics have opened the possibility to prove the occurrence of species across a wide range of 
taxonomic hierarchies via “Environmental DNA” (Taberlet et al. 2012)1 - several thousands of samples 
can be collected inwithin reasonable time frames. Satellite remote sensing data offer temporally 
continuous and spatially contiguous estimates of the states of land and aquatic ecosystems (e.g. 
Tuanmu and Jetz 2014)2. Monitoring biologically mediated fluxes of CO2 between land and atmosphere 
exchanges allow monitoring of ecological processes (Baldocchi 2014, [http://fluxnet.ornl.gov/]) 3 . 
Soundscapes of birds (Kasten et al. 2012)4  offer new ways to determine species diversity. All these 
examples show that novel observational methodologies are currently revolutionizing this branch of 
science. In all cases, the resulting data streams are heterogeneous and often unstructured, even when 
the same processes are observed by different groups, or over different regions of the world. 
Nevertheless, model building is heavily supported by the collected data. Furthermore, increasingly 
sophisticated models are developed, which are parameterized or calibrated with different sources of 
data (e.g. Hartig et al. 2012)5 and demand very substantial computing power. Most information cannot 
be extracted from the data without computer support during the analysis, storage, access, distribution, 
visualization. 
 
Besides typical “big-data” problems caused by volume, velocity, variety and veracity of data, there are 
more important challenges: providing access to the right data (and in an appropriate structure), to extract 
the relevant information considering redundancies and knowledge, and to develop computationally 
efficient ways for data model linkages.  
 
 
Therefore, at least three general topic areas can be identified:  
 

 Obtaining and Preserving Data: This includes automatic monitoring schemes, automatic 
interpretation of e.g. remote sensing or image data, sampling bias analysis and gap-filling, data 
quality management, synthesis and curation. A particular challenge is the huge heterogeneity 
of data ranging from sequence data to remote sensing images, and from digitized natural history 
museum collections to manually collected observation data to audio files capturing acoustic 

                                                 
1  Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology, 21(8), 
1789-1793. 
2  Tuanmu, M.-N. and W. Jetz. 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem 
modelling. Global Ecology and Biogeography 23:1031-1045. 
3  Baldocchi, D. (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the 
state and future of the eddy covariance method. Global change biology, 20(12), 3600-3609. 
4  Kasten, E. P., Gage, S. H., Fox, J., & Joo, W. (2012). The remote environmental assessment laboratory's acoustic 
library: An archive for studying soundscape ecology. Ecological Informatics, 12, 50-67. 
5  Hartig, F., Dyke, J., Hickler, T., Higgins, S. I., O’Hara, R. B., Scheiter, S., & Huth, A. (2012). Connecting dynamic 
vegetation models to data–an inverse perspective. Journal of Biogeography, 39(12), 2240-2252. 

 



 

 

diversity. A second important challenge is the increasing volume of such data evident  already 
for remote sensing data and for sequence and related data, where new techniques and rapidly 
sinking prices lead to an explosion in data volume.  

 Pattern-recognition in highly dimensional and geo-tagged data sets: The field involves 
developing sound and efficient algorithms able to capture structure and feature relations in 
empirical data, and mostly involve finding groups (clustering), anomalies (detection), automatic 
categorization and prediction (classification/regression), and learning proper representation 
spaces (visualization) of generally unstructured, heterogeneous, multimodal data streams 
where quantifying uncertainty is mandatory. 

 Model development and Model-Data-Confrontation (see e.g. Rillig et al 2015)6: This includes 
dealing with sampling bias and scale issues, methods for fitting model to data, scaling and 
parallelization for cluster or cloud computing. 

 
 
Some areas of computer science that can contribute to these topic areas and derive research questions 
from them are: 
 

 Data and Model Management: Data Management is certainly the part of computer science 
that has been used in ecology the longest and is one of the major focus areas of Ecoinformatics. 
Numerous data management platforms and workflow environments suitable for ecological data 
have been developed focussing on different stages of data management from data collection in 
the field (supported, e.g., by smartphone applications) to long term preservation of data.  As 
major challenge remains the seamless integration of data management tasks in the usual 
workflows of the researchers.  A key part of this challenge is identifying what data are useful for 
particular types of analysis and purposes.  Capturing the pragmatic relationships between data 
and their use, including the tasks and methods for which data have been successfully used, 
remains a relatively unexplored area of research.  Additionally, platforms are needed that can 
deal with the vast heterogeneity of the data and the expected future huge volumes of data. 
Increasingly, ecological data of high spatial and temporal resolution can be crowdsourced and 
streamed from sensors of variable quality, and despite the great potential for this data to be 
used for ecological analysis the heterogeneity of sources creates open research challenges for 
data management. New challenges arise also from the vast amount and poor quality of 
sequencing data; requiring new bioinformatics techniques to handle and preserve the data. 

 
 Data Integration: The ability to integrate data is vital for ecological research. However, such 

integration is hampered by a number of factors where the application of modern approaches 
from computer science will be helpful. Over the last few years, considerable effort went into the 
development of formal, machine-readable taxonomies and metadata standards; the use of 
ontologies is relatively widespread. This requires ontology matching and modularisation. Often, 
integration problems are present at the instance rather than the schema level. Approaches for 
duplicate detection and data quality assurance are needed here. Provenance and uncertainty 
management are needed for gaining meaningful results from the integrated data. This area 
poses a real challenge for computer science since the information that needs to be encoded 
goes well beyond the rather simplistic e.g. simple probability distributions commonly used today.  

 
 Modern techniques from Computer Vision, Pattern Recognition, Data Mining and 

Machine Learning: Over the last years, computer vision research already tackled problems 
that are of high relevance for ecological research as well. One example is the analysis of remote 
sensing data, which forms one of the basis for global analysis of terrestrial processes, for which 
several modern methods for automatic processing exist, for example, semantic segmentation. 
Other examples include large scale analysis of the distribution of animals, plants, and 
(increasingly genetically derived) populations (e.g. Balint et al. 2012)7, whereby the data often 
suffers from extremely biased (in space and time) sampling (Meyer et al. 2015)8 and few data 

                                                 
6  Rillig, M. C., Kiessling, W., Borsch, T., Gessler, A., Greenwood, A. D., Hofer, H., ... & Jeltsch, F. (2015). Biodiversity 
research: data without theory—theory without data. Frontiers in Ecology and Evolution, 3, 20. 

 
7  Balint, M., S. Domisch, C. H. M. Engelhardt, P. Haase, S. Lehrian, J. Sauer, K. Theissinger, S. U. Pauls, and C. 
Nowak. 2011. Cryptic biodiversity loss linked to global climate change. Nature Clim. Change 1:313-318. 
8  Meyer, C., H. Kreft, R. Guralnick, and W. Jetz. 2015. Global priorities for an effective information basis of biodiversity 
distributions. Nature Communicatins 6:8221. 



 

 

are available for organism groups where it is difficult to identify the species. Several computer-
based methods have recently been developed to support ecological research. These include 
object recognition software for e.g. plants. However, since those objects offer not just very 
challenging problems but also call for new methods, that lead to the area of fine-grained 
recognition. Although today’s state of the art systems achieve only recognition rates of 70-80%, 
in some scenarios machine vision systems are already better than the inexperienced user. 
Together with techniques from machine learning, like active learning (i.e. keeping the human in 
the loop as in recent activities9), and novelty detection, i.e. detecting if a new object or event is 
observed, preliminary life-long learning systems are currently under development. In such an 
iterative manner of building recognition systems and improving performance by specific 
feedback of users, it is expected that performance of automatic analysis of animals or plants 
from images and videos will reach the threshold that almost fully automatic observation of our 
environment will be possible. Having such methods will bring researchers from ecology closer 
to measurement stations equipped with cameras that could record the environment at a level 
that has not been possible before. Finally, computer vision techniques might support 
digitalization of existing ecological data sets. 
Besides computer vision, modern machine learning techniques will play an important role in the 
future of ecology data analysis as well. For example, analysing huge amount of data by the 
human can be supported by automatic clustering into relevant groups. Dimensionality reduction 
methods, like non-linear or kernel PCA offer new potentials in data pre-processing. Detecting 
the unexpected, i.e. interesting in data streams can be supported by automatic analysis using 
novelty and anomaly detection methods, and thus can serve as clustering in the sense of 
reduction of human efforts to the most important parts of data streams.  
Finally, machine learning techniques in general might help to make the invisible visible by 
solving regression problems using training data. Such mappings from input data to output might 
be the basis for future decision based on measurement. Estimation of bio-geo-chemical 
parameters using advanced retrieval methods currently provide accurate time-resolved 
estimations, but advances on uncertainty estimation (going beyond point-wise predictions to 
meaningful confidence intervals) and knowledge discovery capabilities (i.e. ranking input 
features to understand the underlying bio-physical processes) are still needed. 

 
 High-Performance and Cloud Computing (bring computing power to the data): The growing 

amount of data and increasingly complex models require new ways of processing. It is no longer 
feasible – as is done today – to select data from some online source and download it for local 
processing. Rather than launching the data to the algorithms, the trend is to launch the 
algorithms to the data. Here, approaches for function shipping and/or parallelisation can be 
helpful and are successfully applied, e.g., by GBIF for (re-)ingest of data or in the Map of Life 
project. Ecological information analysis and modeling largely remains restricted in the size and 
complexity of problems that can be addressed due to lack of research into up-scaling ecological 
algorithms (e.g., analysis of ecosystem connectivity) from desktop applications to high 
performance computing.  This requires a systematic approach of mapping ecological data 
structures and algorithms to well-understood techniques of parallel computation and 
communication that have been identified by the high-performance computing research 
community. Identification of how environmental simulations and analyses map to compositions 
of these well-established scientific computing patterns will be a necessary outcome of this 
research. Another challenge is model design to best meet recent advances in computer science. 
This includes, e.g., re-designing models to run on energy-efficient graphics processing units 
(GPUs). Running models on GPUs instead of conventional CPUs can decrease electricity costs 
very substantially10.  

 
Quite obviously, it will not be possible to address all of these issues within a week. Therefore, during the 
seminar, we will bring these two dimensions, i.e., the ecological and the computer science perspective 
together based on three concrete sample problems. 
 
Example 1: Biodiversity Weather Stations/Automated Long-Term Monitoring: Traditionally, data in 
ecological research have been collected manually on a rather small scale. For instance, the traditional 
approach to analysing species richness in a tropical rainforest is to select a plot of manageable size and 
send scientists (typically PhD students) there, to map the species that occur on this plot. This approach 

                                                 
9  EU COST Action: „Mapping and the citizen sensor“, http://www.citizensensor-cost.eu/ 
10  see, e.g. https://csc.uni-frankfurt.de/index.php?id=loewe-hw 



 

 

has several drawbacks: First, it is extremely expensive. Second, since neither money nor personnel are 
unlimited resources, it scales poorly. Third, the quality of the result depends a lot on the expertise of the 
scientists in the field. The acknowledgements of a recent paper on tree flora in the Amazonian that aims 
at developing a large scale model and uses data from around 2000 plots, e.g., states “This paper is the 
result of the work of hundreds of different scientists and research institutions in the Amazon over the 
past 80 years.“11 Basically the same drawbacks exist for other types of data collection in ecological 
research. For instance, in the Biodiversity Exploratories, insect populations on research plots are 
determined by installing window traps in the field which collect insects. The species are then determined 
by manual analysis by large numbers of student helpers analysing every caught individual.   
 
In the future, such monitoring schemes could be automated. Technologies like DNA-barcoding of 
environmental samples, visual and acoustic identification of animals, identification of plants via emitted 
chemicals are currently being combined to build an Automated Multisensor Station for Monitoring of 
Species Diversity (AMMOD). The AMMOD requires a combination of image and sound recognition, 
machine-readable reference libraries for genetic und biochemical markers, images and sounds, the 
storage and sorting of a large amounts of data and finally, when several stations are combined, 
modelling of species distribution in landscapes.  
 
 
Example 2: Global Change Ecology: Key challenges for Ecology in our Global Change era  are i.) to 
understand and predict the geographical distributions and abundances of species and populations and 
ii.) to improve our understanding of the role of biodiversity for the functioning of ecosystems (e.g. 
Maestre et al. 2012) 12  and their supply of services to the human society under Global Change. 
Addressing these challenges implies dealing with spatially biased data, e.g. for the occurrence of 
species, and integrating various data types on where species or populations occur, which functional 
traits they have, the environment in which they live (e.g. climate, soil types, land cover) and ecosystem 
processes, such as biomass productivity and carbon cycling (Pereira et al. 2013) 13. Thus, it is necessary 
to integrate multiple types of data from the biological and geosciences, ranging from genetic data 
characterising populations or species to satellite-derived estimates of land cover change (e.g. Hansen 
et al. 2013) 14. Thereby, the genetic and satellite data, in particular, have reached levels of complexity 
and sizes, which are sometimes beyond the capacities of normal desktop computers. Instead, massive 
RAM or parallel cluster computing are increasingly necessary to handle the data, even for relatively 
simple analyses. For more complex model-data fusion techniques, such as hierarchical Bayesian 
modelling, computational capacities are still highly limiting ecological research.  
 
Example 3: Modelling ecosystem and Earth system processes: Modelling now also plays a crucial 
role for ecosystem science from the local to global scale. More and more ecological processes are 
currently integrated into so-called Earth System models, which integrate climate models with biosphere 
models (Bonan et al 2003)15 (Cox et al 2000)16. Yet, there is a large uncertainty in future model 
predictions for these dynamic systems (Heimann and Reichstein 2008)17. One challenge now is to 
provide observation-based constraints which can confine future model behaviour. We need to 
understand better which patterns of the observations provide robust constraints for models. Hence, we 

                                                 
11  Ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., ... & Fine, P. V. (2013). 
Hyperdominance in the Amazonian tree flora. Science, 342(6156), 1243092. 
12  Maestre, F. T., J. L. Quero, N. J. Gotelli et al. 2012. Plant Species Richness and Ecosystem Multifunctionality in 
Global Drylands. Science 335:214-218. 
13  Pereira, H. M., S. Ferrier, M. Walters, G. Geller, R. Jongman, R. Scholes, M. W. Bruford, N. Brummitt, S. Butchart, 
and A. Cardoso. 2013. Essential biodiversity variables. Science 339:277-278. 
14  Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. 
Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-Resolution 
Global Maps of 21st-Century Forest Cover Change. Science 342:850-853. 
15  Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein and K. W. Oleson (2003). "A dynamic global vegetation 
model for use with climate models: concepts and description of simulated vegetation dynamics." Global Change 
Biology 9(11): 1543-1566. 
 
16  Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall and I. J. Totterdell (2000). "Acceleration of global warming 
due to carbon-cycle feedbacks in a coupled climate model." Nature 408: 184-187. 
17  Heimann, M. and M. Reichstein (2008). "Terrestrial ecosystem carbon dynamics and climate feedbacks." 
Nature 451: 289-292. 
 



 

 

need to move away from simple model-data comparisons, to pattern-oriented model evaluation, 
calibration and interpretation in a system-oriented way (Reichstein and Beer 2008)18. Examples of this 
include approximate Bayesian computation (Vrugt et al 2013)19 and the concept of emerging constraints 
(Cox et al 2013)20. As a variety of data types, ranging from leaf-level measurement of photosynthesis to 
satellite-derived estimates of forest biomass, can be used to parameterize and constrain ecosystem 
models, such models might in the future rather serve as process-based linkages between multiple data 
types, instead of just being parameterized and tested with individual data sets at a time. 
 
 
Organization of the seminar, objectives and results 
 
To foster collaboration, most of the seminar will be organized in interdisciplinary working groups. 
We envision the following preliminary schedule: 
 
Monday:  
09:00 – 09:30 Welcome 
09:30 – 11:00 Intro by Participants (2 min each) 
11:00 – lunch Intro talk to Example 1  
14:00 – 15:00 Intro talk to Example 2 
15:30 – 16:30 Intro talk to Example 3 
16:30 – 17:15 Intro to structure of working groups, organisation of working groups 
17:15 – 18:00 Setup meeting of working groups 
20:00 – 21:00 Poster session, then wine cellar 
 
The introductory talks to the three examples will be prepared prior to the seminar by small, 
interdisciplinary groups of participants and organizers.  
 
 
Tuesday:  
Working group day 
Evening: Tool demo session (see below for details) 
 
Wednesday: 
Morning: reports from working groups 
Afternoon: excursion 
 
Thursday:  
Morning: plenary: Identification of further working groups 
 Depending on participants’ interests, these working groups could focus on additional example 
scenarios provided by some of the participants or delve deeper into individual aspects identified in the 
first round of working groups.  
Remainder of day: work in working groups 
 
Friday: 
Report from working groups 
Assignment of homework (see below “Objectives”) 
 
Organisation of working groups 
The first round of working groups shall be organized along the following lines: 
Each working group will be based on one of the example problems identified in this proposal and further 
elaborated in one of the introductory talks. 
The working group shall then: 

                                                 
18 Reichstein, M. and C. Beer (2008). "Soil respiration across scales: The importance of a model-data integration 
framework for data interpretation." Journal of Plant Nutrition and Soil Science 171(3): 344-354. 
 
19 Vrugt, Jasper A., and Mojtaba Sadegh. "Toward diagnostic model calibratn and evaluation: Approximate 
Bayesian computation." Water Resources Research 49.7 (2013): 4335-4345. 
20 Cox, Peter M., David Pearson, Ben B. Booth, Pierre Friedlingstein, Chris Huntingford, Chris D. Jones, and 
Catherine M. Luke. "Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability." 
Nature 494, no. 7437 (2013): 341-344. 



 

 

 - identify data; data types, characteristics of data relevant to this problem 
 - identify what scientists are interested in (classification, ...) 
 - identify suitable tools to solve these problems; where they exist:  demo in evening session (e.g. Map 
of Life, GFBio, );  
 - identify gaps and needs for further research.  
- identify possible funding sources for such research. 
 
 
The seminar has two main objectives: 

1. Joint authoring of a book on the state of the art and challenges in the intersection of computer 
science and ecology. This book shall be based on the results of the working groups. Based on 
the example scenarios it will introduce three important classes of approaches in Ecology. For 
these, it will provide an introduction to available tools, and will outline challenges for future 
research. Such a book can serve as a handbook for ecologists needing computer science but 
also as a roadmap for future research activities.  

2. Define project ideas for cooperation between Computer Scientists and Ecologists and where 
possible identify suitable funding schemes. 

 
 


