Dagstuhl Seminar on

Inter-Vehicular Communication – Quo Vadis

Onur Altintas (Toyota InfoTechnology Center, Japan),
Falko Dressler (University of Innsbruck),
Hannes Hartenstein (KIT, Germany),
Ozan Tonguz (Carnegie Mellon University, USA)

Day 0 (Sunday, Sept. 22 2013)

20:00- Arrival and informal come-together

Day 1 (Monday, Sept. 23 2013) “Introduction and State of the Art”

09:00-10:30 Welcome and Introduction (incl. 3-minute self-introduction of participants)
10:30-11:00 Break
11:00-12:15 Keynote by Marco Gruteser
12:15-14:00 Lunch
14:00-15:00 Ad-hoc talks (15 minutes each; Peter Vortisch, Natalya An, Andreas Festag, Christoph Sommer)
15:00-15:30 Working group preparations
15:30-16:00 Break
16:00-18:00 Group work
18:00-20:00 Dinner
20:00- After dinner informal discussion

Day 2 (Tuesday, Sept. 24 2013) “Quo Vadis”

09:00-10:30 Group summaries and discussion
10:30-11:00 Break
11:00-12:00 Keynote by Geert Heijenk
12:15-14:00 Lunch
14:00-15:30 Ad-hoc talks (15 minutes each; Jerome Haerri, Renato Lo Cigno, Mario Gerla, Giovanni Pau)
15:30-16:00 Break
16:00-16:30 Group Work
16:30-18:00 Group summaries and discussion; day summary
18:00-20:00 Dinner
20:00- After dinner informal discussion

Day 3 (Wednesday, Sept. 25 2013) “Roadmap”

09:00-10:00 Ad-hoc talks (15 minutes each; Michele Segata, Frank Kargl, Tessa Thielert, Raphael Frank)
10:00-10:30 Group Summaries
10:30-11:00 Break
11:00-11:30 Drafting a Roadmap
11:30-12:15 Final plenum discussion
12:15-14:00 Lunch
Working Groups:

1. Applications First / Top-Down Approach to IVC (Moderator: Ozan)
2. Experiences from Field Operational Tests / Impact on Simulations (Moderator: Marco)
3. Towards Heterogeneous Networks / Impact of DSRC on Spectrum Sharing (Moderator: Falko)
4. IVC and Computer Science (Moderator: Hannes)
5. Security and Privacy (Moderator: Jonathan)

The working groups will address the following issues:

1. Assess the state of the art and discuss whether existing solutions are sufficient, adequate, or even exaggerated to solve the practical problems in VANETs.
2. Identify general approaches from existing solutions, categorize them, and discuss which of those are most promising.
3. Discuss how such solutions might be successfully applied in other fields of computer science and communication systems like NGN, WSN, DTNs, etc.
4. Collect mechanisms and approaches that have not been taken into consideration for VANETs and discuss if one should analyze their applicability.
5. Identify open and unresolved issues and give research directions for future VANET research.