Robert Giegerich, Susan L. Graham (editors):

Code Generation - Concepts,
Tools, Techniques

Dagstuhl-Seminar-Report; 13
20.-24.5.1991 (9121)

ISSN 0940-1121

Copyright © 1991 by IBFI GmbH, Schlo8 Dagstuhl, W-6648 Wadem, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das Intemationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI) ist eine gemeinniitzige
GmbH. Sie veranstaltet regelmiBig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter
und Begutachtung durch das wissenschaftliche Direktorium mit persOnlich eingeladenen Gisten
durchgefiihrt werden.

Verantwortlich fiir das Programm:
Prof. Dr.-Ing. José Encarnagao,
Prof. Dr. Winfried Gorke,
Prof. Dr. Theo Hirder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universitéit des Saarlandes,
' Universitit Kaiserslautemn,
Universitéit Karlsruhe,
Gesellschaft fiir Informatik e.V., Bonn
Tréger: Die Bundeslinder Saarland und Rheinland Pfalz.

Bezugsadresse: Geschiftsstelle SchloB Dagstuhl
Informatik, Bau 36
Universitit des Saarlandes
W - 6600 Saarbriicken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

Workshop on Code Generation
Schlof§ Dagstuhl, May 20-24 1991

organised by
R. Giegerich and S. L. Graham

Summary

The goal of the workshop was to evaluate the state of the art and to point out the major
directions of research in code generation for the coming years. Most of the contributions were
arranged around four topics:

e Tools and techniques for code selection
e Code generation for parallel architectures
» Register allocation and phase ordering problems

e Formal models and validation

Besides these, there were contributions on some new topics such as dynamic compilation or
object-oriented methods for code generation.

The workshop had 36 participants, 20 from Europe and 16 from the USA.

Tools and techniques for code selection

It is widely agreed that tree pattern matching is the technique of choice for code selection. Much
discussion was devoted to relating the BURS approach, tree parsing and the new approach of
“regular controlled rewriting”. While the pure matching problem seems solved satisfactorily, the
big problem to be solved is the integration of the pattern driven code selector with other code
generation tasks. “Considerate code selection” allows to postpone decisions in the code selection
phase. By contrast, existing tools incorporate a specific way of where decisions are made.

An engaged discussion on specification techniques (a protocol of this discussion is included) lead
to the decision that a group of the participants would cooperate to make a pure BURS system
available for public distribution,

Code generation for parallel architectures

Coarse grain parallelism: This topic is characterised by attempts to provide a high-level, archi-
tecture independent model of parallelism to be used in programming and, on the other hand,
programming techniques and languages features that expose the architecture to the program-
mer. The latter reduces compiler complexity, but also program portability. A summary of the
discussion of this topis is included.

Fine grain parallelism: While a general model of pipeline scheduling is still not available, some
comparative results for different RISCs and different scheduling techniques are now available. It
is open how to characterize the class of machines for which these results are valid. As expected,
interaction between scheduler and register allocator is crucial.

Register allocation and phase ordering

Register allocation interacts with all code generation tasks. Contributions treated techniques
for code rearrangement, life range splitting and multi-level window models.

Formal models and validation

Formal methods try to enhance the reliability of code generators by providing a declarative
meaning of code generator descriptions and formal proof techniques. A number of interesting
approaches were presented. Some (parts of) simple code generators have been proved correct
mechanically, some more realistic ones have been proved “by hand”, but the effort is usually
immense. Currently, no proof techniques are available for the code generation techniques actually
used in practice. Both sides must advance - future tools should provide a declarative semantics,
and validation methods must be geared to code generation techniques.

Acknowledgements

The workshop provided an excellent forum for the exchange of ideas, bringing together groups of
experts that are unlikely to meet at the side of a more general conference. Strong participation
from the USA was made possible by a travel grant from NSF.

The concept and implementation of the Dagstuhl Institute was accepted enthusiastically by the
participants. The charming surroundings and the relaxed, but highly professional management
helped to make this workshop a pleasant and rewarding experience.

Participants

Bodin, Francois
IRISA - Campus de Beaulieu
35042 RENNES Cedex
France
francois.bodin@irisa.fr

Bowen, Jonathan
Oxford Univ. Comp. Lab.
Programming Reseach Group
11 Keble Road
Oxford OX1 3QD
England
Jonathan.Bowen@prg.oxford.ac.uk

Boyland, John
Computer Science Division - EECS
University of California
511 Evans Hill
Berkeley, CA 94720
USA
boyland@sequoia.berkeley.edu

Bradlee, David G.
University of Washington
Dept. of Compter Science, FR -35
Seattle, WA 98195
USA
dgb@cs.washington.edu

Briggs, Preston
Rice University
Dept. of Computer Science
P.O. Box 1892
Houston, Texas, 77251-1892
USA

preston@titan.rice.edu

Buth, Bettina
Institut fir Informatik
Universitat Kiel
PreuBerstr. 1 - 9
2300 Kiel 1
Germany
bb@causun.uucp

Emmelmann, Helmut

GMD an der Universitat
Karlsruhe
Haid-und-Neu-Str. 7
7500 Karlsruhe
Germany

emmel@karlsruhe.gmd.dbp.de

Fédeéle, Carine

I3S-CNRS

Université de Nice

250, Ave. A. Einstein
06560 Sophia Antipolis
France
carine@cerisi.cerisi.fr

Ferdinand, Christian

Universitat Saarbriicken
FB Informatik

Im Stadtwald 15

6600 Saarbriicken 11
Germany
ferdi@cs.uni-sb.de

Fisher, Josh
Hewlett-Packard Labs
30 Griggs Road
Brookline, MA 02146
USA

jfisher@hplabsz.hpl.hp.com

Fraser, Christopher W.
AT&T Bell Labs
600 Mountain Ave 2C-464
Murray Hill, N.J. 07974
USA

cwf@research.att.com

Freericks, Markus
TU Berlin
1000 Berlin

Germany

mfx@mozart.cs.tu-berlin.de

Freudenberger, Stefan
Apollo Systems Div.
Hewlett Packard
300 Apollo Drive
Chelmsford, MA 01824
USA
stefanQapollo.hp.com

Ganapathi, Mahadevan
Computer Science Division
University of California Davis
Davis, CA 95616
USA

ganapath@cayenne.eecs.ucdavis.edu

Giegerich, Robert
Universitat Bielefeld
Technische Fakultat
P.O.Box 8640
4800 Bielefeld 1
Germany
robert@techfak.uni-bielefeld.de

Graham, Susan L.
Computer Science Division - EECS
University of California
511 Evans Hill
Berkeley, CA 94720

USA
graham@sequoia.berkeley.edu

Hatcher, Phil
Dept. of Computer Science
Univ. of New Hampshire
Kingsbury Hall
Durham, NH 03824
USA
pjh@cs.unh.edu

Henry, Robert R.
University of Washington
CS & E Dept., FR-35
Seattle, WA 98195
USA

rrh@tera.com

Hogenkamp, Horst
Universitat Bielefeld
Technische Fakultat
Postfach 86 40
4800 Bielefeld 1
Germany
horst@techfak.uni-bielefeld.de

Kastens, Uwe
Universitat-GH Paderborn
FB Informatik
4790 Paderborn
Germany
uweQ@uni-paderborn.de

KeBler, Christoph W.
Lehrstuhl fiir Rechnerarchitektur
FB 14 Informatik der
Universitat des Saarlandes
Im Stadtwald 15, Geb. 36, Zi. 114
6600 Saarbriicken
Germany
kessler@cs.uni-sb.de

Knobe, Kathleen
Compass Inc.
550 Edgewater Drive
Wakefield, MA 01880
USA

knobe@compass.com

Kroha, Petr
Fachbereich Informatik
Fachhochschule Dortmund
Postach 10 50 18
Germany

kroha@zuse.informatik.uni-dortmund.de

Krzyzanowski, Paul
Paul Krzyzanowski
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974
USA

paul@research.att.com

Lake, Mike
Dept. of Computer Science
2413 Digital Computer Lab.
1304 West Springfield Ave.
Urbana IL 61801
USA
jmlake@kant.cogsci.uiuc.edu

Mazaud, Monique Veldhuijzen van Zanten, Gert E.

INRIA-Rocquencourt Faculteit Informatica INF/TO H303
Domaine de Voluceau Universiteit Twente
B.P. 105 - 78153 P. O. Box 217
Le Chesnay Cedex 7500 AE Enschede
France Netherlands
mazaudcminos . inria. fr veldhvzccs utwente .nl
Osborne, Hugh Waite, William M.
Department of Informatics Department of
University of Nijmegen Electrical and Computer Engineering
Toernooiveld 1 University of Colorado
6525ED Nijmegen Boulder, CO 80309-0425
Netherlands USA
hughOcs.kun.nl waiteOboulder.colorado.edu
Pfahler, Peter Wall, David
Universitéat Paderborn DEC Western Research Lab
Warburger Str. 100 100 Hamilton Ave
P.O.Box 1621 Palo Alto, CA 94301
4790 Paderborn USA
Germany wallcdecwrl .dec.com

peterodonar.uni-paderborn .de
Wilhelm, Reinhard

Philippsen, Michael . UniversitatSaarbricken
Fakultdt fiur Informatik F B Informatik
Universitéat Karlsruhe Im Stadtwald 15
Am Zirkel 2 6600 Saarbriicken 11
7500 Karlsruhe Germany
Germany wilhelmocs .uni-sb .de

phlippcira .uka.de o
Wolczko, Mario

Tichy, Walter F. Dept. of Comp.Science
Fakultat fur Informatik University of Manchester
Universitéat Karlsruhe Manchester M13 9PL
Am Zirkel 2 England
7500 Karlsruhe marioccs man. ac .uk
Germany

tichyoira .uka .de

Program and abstracts

Monday, 20. May 1991

Morning session

<>Helmut = Emmelmann CODE SELECTION BY REGULAR CONTROLLED
TERM REWRITING T

In my presentation | will introduce a new method to evaluate systemsof term
rewriting rulesor term equations. It is called regular controlled term rewriting. The
basic idea is to control the rule applications by using a regular tree automaton.

Using those systemsmakesit possibleto describecodeselectorsby very high level
speci cations: The mapping from the intermediate code to the target code can be
describedby term rewriting rules or by equationsin a compactway. A tree grammar
with associatedcost valuesis usedto specifythe set of target terms and their costs.
Codeselectionis now the problem of rewriting a given intermediate codeterm into a
target term of minimal cost. The description method, asfar asonly codeselectionis
concerned,s similar to the work of R. Giegerich[Gie90a,Gie90b]. He usesan order
sortedtype systemto specifythe setof target terms, which is quite similar to the tree
grammarswe use. Becauseof the biggerclassof term rewriting systemswe can process
our descriptionscan be more compactand elegant. Howeverin contrast to Giegerich
we have not considered register allocation yet.

Our generationalgorithm takesa descriptionand producesa tree transducerwhich
constructsfor eachinput term a cost minimal target term. This tree transducercan
be implementedvery efficiently. We canhandlea large classof term rewriting systems.
For exampleit is possibleto write equationswhich we consideras two rewriting rules
one in eachdirection or evenrules with only a variable on the left hand side. The
term rewriting systemsneedto be neither con uent nor terminating. Similar to the
approachn [EPL88}he transformatiomrocesss requiredo proceedbottomup with
finite exceptions. Howeverour method can also processterm rewriting systemswhich
do not obey the BURS-condition.

The paper consistsof three parts. First it will be shownhow codeselectorscan be
speci ed usingour method. The main part of the paper describeshe algorithm which
generateghe tree transducer. Finally wewill presentexperiencesvith afirst prototype
implementing our method.

<> Christian Ferdinand TREEPARSING - EXPERIENCES MADE IN
SAARBRUCKEN

The codegeneratottool developedat the Universitaet des Saarlandeshas as input
anannotatedegulartreegrammar(alsocalled machinegrammar),whoseulesde-
scribethe effects(of parts) of the machinanstructionsastermsin an intermediate
representation. Theserules are regarded as reduction rules. A reduction sequence
to a nonterminal of an expressiongiven as a tree in the intermediate representation
(equivalentha derivationof the tree accordingo the tree grammar)correspondto
onepossiblenstructionsequenceA treeparserfor the machinegrammarsis used

to examineall possiblederivations and the cost annotations are usedto determinea
sequencewith minimal costs.

The codegeneratotool wasplannedasan extensionto the OPTRAN system. OP-
TRAN is a system to support transformations of attributed trees. The syntactic part
of the application condition of a transformation is specifiedby a tree pattern in the
sensef [HO82I»For thesepatternsthe OPTRAN systemincludesan incremental
pattern matchergenerator,which generatesdottom-up tree automata [M6n80]. These
automata are representedby setsof horizontal tree automata [KrO75],which can
usuallybe storedmorespaceeflicientlythan a directrepresentatioasmatrices. 0

For a given machine grammar , the codegeneratottool rst generatesa pattern
matcher for the rules. The nonterminals are treated as terminal symbols. In a sec-
ond phase,this pattern matcheris transformedinto a bottom-up parserfor the tree
grammarby simulating derivationsteps(or equivalentlyreductionsteps)[WW88].
The representationof the parsersas horizontal tree automata leadsto acceptable
automate sizes.Usingtable compressiomethodsasdescribedin [BMW88], the parser
can be stored very spaceefficient (e.g. approximately 7000entries for a NSC32000).

<>Robert Giegerich - CONSIDERATECODE SELECTION

Considerate Code Selectionseperatesanalysis and program transformation used
in codegeneratiorfrom actual selectionj.e. makingdecisiondetweeralternative
encodingsof a program. In the extreme, all alternatives are fully analysedand the
choiceis madeasthe nal step. Sincethe number of alternativesis exponentialin the
sizeof the input program, a new form of sharingis required to make this approach

feasible.
Afternoon session
<> Jonathan Bowen - - FROM PROGRAMS TO OBJECT CODE AND BACK

AGAIN USING LOGIC PROGRAMMING

A compiler may be speci ed by a description of how each construct of the source
languageis translated into a sequenceOf Object code instructions. It is possibleto
producea compiler prototype almost directly from this speci cation in the form of a
logicprogram.Thisde nesarelationbetweemllowedigh levebndlow-leveprogram
constructs. Normally a high-levelprogramis suppliedasinput to a compilerand object
codasreturned.BecausefthedeclarativmatureOfalogicprogramthereisnoreason
in theorywhy objectcodeshouldnot be suppliedandthe allowecdhigh-leveprograms
returned, resulting in a decompiler. This paperdiscusseshe problemsof adopting such
an approachin practice. A simple compilerand decompilerare presentedin full asan
examplen the logicprogramminganguagérolog togethewith somesampleoutput.
Finally,the possibléene tsof usingconstraintogicprogrammingreconsideredlt is
possiblethat the results presentedcould be developedo be of practical usefor reverse
engineeringin the softwaremaintenanceprocess.

<>C. W. Keler, W. J. Paul and T. Rauber REGISTERLLOCA-
TION AND CODE OPTIMIZATION FOR VECTOR BASIC BLOCKS ON VECTOR
PROCESSORS

We present a randomized heuristic algorithm to generate continuous evaluations
for expressionDAGs with nearly minimal register need; The heuristic may be used

9

to reorder the statementsin a basicblock before applying a global register allocation
schemdike graph coloring. Experimentshave shownthat the new heuristic produces
results about 30% better on the averagethan without reordering.

Basic blocks of vector instructions lead to vector DAGs. For the special class of
guasiscalarDAGS, the problem can be reducedto the scalar casehandled abovepro-
vided that somemachineconstraints such as buffer sizeand pipeline depth are taken
into consideration. Theorectical considerations show that there exists an interesting
tradeoff-effect between strip miningan vector register spilling. Therefore we give an
algorithm which computesthe bestratio of spill rate to strip length with respectto the
run time on the target vector processomwhich is given by somearchitecture parameters.
This algorithm is suited for vector processorsontaining a buffer (register le) which
may be partitioned arbitrarily by the user.

0 Petr Kroha CODE GENERATION FOR A SINGLE-INSTRUCTION MA-
CHINE

Most contributions on this seminar describe sophisticated solutions of the code
selectionproblem. In my contribution | describenowto avoidthis problem. The Single-
Instruction Computer (SIC) machinewill be describedwhich usesonly oneinstruction
in the set of machine instructions, i.e. the operation code will be omitted. The only
operation is MOVE. The main processor(a Central Move Unit (CMU)) of the SIC
machine only movesoperandsto specializedone-operation-coprocessorArithmetic
Move Unit (AMU)). In this paperwe discussusageof AMU s which havethe execution
time largerthan the MOVEoperationhas. This extensionoffersparallel programmingof
sucha machine. Considerableéhought hasbeendevotedto problemsof codegeneration
with a particular regardto schedulingusedin a compilerfor sucha machine.

Tuesday, 21. May 1991
Morning session

<> Michael Philippsen 8c Walter F. Tichy COMPILING FOR MAS-
SIVELY PARALLEL MACHINES

This article discusseechniquedor compiling high-level,explicitly-parallel languages
for massively parallel machines.

We presentmechanismdor translating asynchronousas well as synchronouspar-
allelism for both SIMD and MIMD machines.We showhow the parallelism speci ed
in _grogram is mappedonto the available processorsand discussan effective opti-
mization that eliminates redundant synchronization points. Approaches for improving
scheduling,load balancing, and co-location of data and processesare also presented.
We conclude with important architectural principles required of parallel computers to
support ef cient, compiledprograms.

Our discussionis basedon the languageModula-2*, an extensionof Modula-2 for
writing highly parallel programsin a machine-independentproblem-orientedway. The
novel attributes of Modula-2* are that programs are independent of the number of
processors, independent of whether memory is shared or distributed, and independent
of the control mode (SIMD or MIMD) of a parallel machine. Similar extensionscould
easily be included in other languages.

10

<>Phil Hatcher CCMPILINGDATA_-PARALLPROGRAMBORMIMD
ARCHITECTURES

We are convincedthat the combinationof data-parallellanguagesand MIMD hard-
ware can make an important contribution to high-speedcomputing. We describea
compiler that translates a data-parallel variant of C to code suitable for execution
on hypercubemulticomputers. Dataparallel C providesa model that includesvirtual

processorssynchronousexecution,and a global name-space.The hypercubecompiler
must implement thesefeatureson distributed-memory machineswhoseprocessorsare

running asynchronouslyWe presentthe resultsof evaluatingthe compilerusinga suite
of benchmarkprograms.

<> Kathleen Knobe ISSUES IN GENERATING CODE FOR DISTRIBUTED
MEMORY ARCHITECTURES

Compasshas built a number of Fortran-90 compilersfor singleinstruction stream
multiple data stream (SIMD) targets, including onesfor Thinking MachinesCorp. s
Connection,Machine, MasPar sMP-I, and David Sarnoff ResearchLab S Princeton
Engine. In this context, we have developedsomenew compilation strategiesfor the
middle and backendto optimize variousaspectsof the resulting code. Sincecommuni-
cation amongprocessorsn distributed memorysystemsis far more costly than compu-
tations within processorsthesenew strategiesare largely directed at either creatingor
exploiting locality within processorsSincemost of thesetechniquesare directed at op-
timizing for distributed memoryand are not SIMD speci ¢, we are currently extending
the results to MIMD targets.

Here we describethree new analyses. The rst, called data optimization, is de-
signedto createlocality of referencewithin processorsData optimization analyzeshe
usageof array sectionsin the sourceand determinesthe relative layout of arrayswith
respectto eachother in orderto minimize interprocessorcommunicationrequirements.
This phasefocuseson the sourceusageand ignoreslimitations imposedby the target
architecture. The secondanalysis,mapping, mapsthe arraysonto the nite number
of processorsn the target architecture, maintaining the relative alignmentsproduced
by data optimization. Mapping may result in multiple elementsof an array on each
processor.The third analysis,divide-into-regions,analyseshe layout of eachoperand
in an expressiortree and optimizesthe strip loopsto optimize registerusage.Although
wealsoperform the standardstrip loop optimizations, the issuesaddressedy division-
into-regionsare speci ¢ to SIMD architecturesand are not describedelsewhere.

Afternoon session

0 A. Asthana, H. V. Jagadish, P. Krzyzanowski THE DESIGNOF
A BACK-END OBJECT MANAGEMENT SYSTEM

We describethe architecture and designof a back-endobject manager,designed
asan active memory systemon a plug-in boardfor a standardworkstation(or
personakomputer). We showhow, with minimal modi cation to existingcode,it
Is possiblgo achievesigni cantperformancenprovementor the executiorof data-
intensive methodson objects, simply by using our back-endobject manager.

11

<>Mario Wolczko IsSUESIN CODEGENERATIORORSMALLTALK-80
ON AN OBJECT-ORIENTED ARCHITECTURE

The Mushroom Project at the University of Manchesterhas designedand is imple-
mentinganovel architectureto supportobject-orientedlanguagesuchas Smalltalk-80.
The architecture hasbeendesignedwith current compilertechnologyin mind, sothat
much of the burden of achievinggood performancerests with the compiler.

This talk will outline the Mushroomarchitectureand compiler structure, and con-
centrate on issuespeculiar to the architecture and sourcelanguagewhich havea sig-
ni cant impacton codegeneration.

Some of these issues are:

o Dynamically bound procedure invocation
The predominant control structure usedin Smalltalk-80is basedaround message
sending (dynamically-bound procedureinvocation). Apart from the overheadof
this mechanism,it presentsa number of barriers to further optimisation. The
detectionof casesvhich canbe boundat compiletime opensthe door to signi cant
performancegains.

0 Optimisation and efficient execution of Smalltalk blocks (similar to
Lambda-expressions in Scheme)
Suchexpressionsare usedextensivelyin Smalltalk for the construction of control
structures. The contexts (activation records)of all control structures are, in the

generalcase,availableas rst-class heap-allocatedgarbage-collecteabjects. Sig-
ni cant performancegainsareto be had by detecting specialcaseswhich do not
require the creation of full objects.

0 Interactive use
Thenalcompilenusstillpresertieeinteractivaturefthesysteigeach
compilation must not take morethan a few secondsand should usually be under
a second),and respectthe demandsof the source-leveblebugger.

0 Register allocation and instruction scheduling

Becausebasic blocks are on the averagevery short (due to the frequent use of
messagesends), it is important to squeezehe most out of every cycle by avoid
pipeline bottlenecks and collisions,and lling delayedbranch slots as much as

possible.
0 Josh Fisher INSTRUCTION-LEVEHHARALLELISN:. SPECULATIVE
EXECUTION

This talk addressesompilingmethodsfor instruction-level parallel processorssuch
as superscalarsand VLIWSs, with particular emphasison techniquesfor speculative
execution.

An operation is speculativewhenit is executedaheadof a conditional jump that
might havepreventedits execution. Although researchersiavehad difficulty accepting
this conclusion,experimentsdoneover the past 20 yearshave consistently shownthe
samething:

0 There is a lot of instruction-levelparallelism availablein most types of real pro-

grams (anywherefrom a potential speedugdactor of 5 to speedupdimited only by
the sizeof the data).

12

o If youdon t doalot of speculativeexecution,you canonly getalittle of it (perhaps
a factor of 2-3).

Trying to do a lot of speculativeexecutionled 13yearsagoto a compilertechnique
called trace scheduling . Trace schedulingconsidersvery large windows, sometimes
containingthousandsof operations. The alternative, consideringblocksof straight line
code,leadsto the binding all of the nonspeculativeoperations rst, andthe generation
of very poor code.

Trace scheduling svindowsare linear executionpaths through the code,but ob':i-
ously one can t considerall paths. Instead, trace schedulingcompromisesby passing
conditional jumps only in the statically predicted more likely direction. This compro-
mise works well for codeswith highly predictable control ow, including many impor-
tant numeric applications. But recenthard evidencehas veri ed the intuitive feeling
that this throws out toomuch opportunity in manygeneral-purposeodes.In this talk,
| will briey reviewtrace schedulingand the recentexperimental data which leadsone
to want to extend it. | will then survey techniqueswhich extend trace scheduling
to more generalcodeby consideringoperationsfrom both sidesof conditional jumps.
Someof thesetechniquesdate from the original formulation of trace schedulingand
soon thereafter, while others are new. Finally, | will touch on the interesting systems

effectsof trying to do hundredsof operationsyou aren t necessarilysupposedto have
done.

Discussion on Parallelism

Led by WalterF. Ticbywith the aid of a fewpreparedslides
Summarizedby Michael Pbilippsen

Parallel Nlacihine Architecture and Parallel Programming

Today s sequentialprocessorsare 1101designedn a vacuumdnstead, they are built to
fulll the needsof extensiw;zetsof benchmark programs and at the sametime take a
into accountthe capabilitiesof compilers. A comparablelevel of maturity hasnot been
reachedin the designof parallel computers. The semantixgap betweenparallel hard-
ware and high-level, parallel languagess substantialat PICent, and far too largeto be
bridgedeffectivel\by a compiler.Theresultis that programmermustcodeat a low,
machine-orientedevel and that parallel programsare largely non-portable. This poor
state of affairs is not surprising, giventhat many of the variablesinvolved in parallel
systemdesignare unknown and in a state of ux. Thesevariablesinclude the capa-
bilities that parallel machinescan offer, the translation and optimization techniquesof
compilersfor parallel machines,and the appropriate high-level constructs in parallel
programming languages. In addition, parallel system architecture allows many more
degreesof freedomthan sequentialsystems.In the long run, however,the practice of
rewriting parallel programsfor everynew machinearchitecture is economicallyintoler-
able. A major challengeis hencethe harmonizationof parallel machinearchitectures,
compilers,and programminglanguagesyith the goal of allowing programsto be writ-
ten in high-level, problem-orientedanguageswhile developingcompilersthat translate
the programsinto efficienttarget codefor a wide variety of parallel architectures. Suc-
cesswill be measuredby howwell real, machine-independengapplication programswill

13

executeon real, parallel computers. Sincehighly parallel machineswith thousandsand
tensof thousandsof processorsre alreadybeingmanufacturedand usedcommercially,

this challengerequiresa solution urgently.

imperative functional logic

Programming Languages

Compilers

Parallel Architectures

SIMD MIMD Dataflow
shared memory distributed memory
CM MasPar nCUBE Intel DAP

Figure 1: Interaction betweenLanguagesCompilers, Architectures

The purposeof the discussiorwasto approachthis challengefrom the languageand
compilerdesigner sviewpoint. The questionsput to the audiencewereasfollows:

0 What are the needsof the programmers?

o What features of parallel computersare germaneand must be re ected in the
programming languages?

o What features of parallel computers are accidental or irrelevant for machine-
independentprograms?

o What arethe major questionsfacedby compilerwriters?

o What properties should parallel hardware possesgo allow for efficient, compiled
programs?

A view shared by many in the audiencewasthat the approachof automatically

parallelizing existing, sequentialcode should not be followed intensively. Although

there is overwhelmingeconomigusti cation for this approach,it will meetwith only
limited successn the short to medium term. The goal of automatically producing
parallel programs can only, if ever, be achievedby program transformation systems
that start with problem speci cations and not with sequentialimplementations. In
a sequentiglrogram{oo manyopportunitiefor parallelisrhavebeenhiddenor

eliminated.

A long term goal could be to developinteractive program transformation systems
that assistprogrammersin parallelizing programsand provide feedbackand guidance.
The problem with this idea is that the approachof semi-automatic program trans-
formations is still an object of active research,evenfor sequentialprograms. In the
mediumterm, a production-quality transformerfor deriving realistic, parallel programs

14

is unlikelyto appear.The traditional methodof teachingalgorithmsandformulating
them in programminglanguageswith explicit parallelismis likely to be more successful,
especiallysincethe body of known parallel algorithmsis largeand growing rapidly. Ini-
tial indications seemto bethat writing parallel softwareis not signi cantly harderthan
writing sequentialsoftware,provided the languagesand support tools are adequate.

Concerns of the Programmer

Thefollowingis a generalist of requirementen programminganguageandsupport
tools. Therequirementarenot new;they areborrowedrom the world of sequential

programs,but apply equally well to parallel programs.

o0 The programminglanguageshould permit clearexpressiorof algorithms and sys-
tems architecture, to easethe writing, reading, veri cation, understanding, mod-
ification, and reuseof softwaresystems.

0 Programsshould be portable to a wide rangeof hardwarearchitectures.

o Programsshouldrun (after compilation) with satisfactory efficiencyand with ef-
fective utilization of the available hardware resources.

0 Supporttoolsfor debuggingtesting,and measuringf parallelprogramsshould
be available.

Currentpracticeis quitedifferent:Existingparallelprogrammindanguagedo not
allowclearexpressionf algorithms parallelprogramsare not portable,and support
toolsareoftenpoor. Thegoalof satisfactorgfficiencganoftenbemetonly by writing
low-level,machine-dependentode.

But what are propertiesof parallel architecturesthat should be visible in parallel
programsBhouldhe numberof processoitsevisible?Is it necessarfpr the program-
merto knowaboutthe organizatiorof memoryor the layoutof the data? Are explicit
communication protocols necessarypr will the compiler be able to insert them into
the generatedodeby analyzinghe data usagepatterns? Shouldthe controlmode
bevisible,i.e.,shouldtherebe differentprogrammindanguagespecializetbr SIMD,
MIMD, Data ow or systoliccomputers?

PRAM. The PRAMis clearlythe beststudiedapproacho parallelprogramming
today. Mostalgorithmsareformulatedor the PRAM model. The sharednemoryof
this model makesprogramsmucheasierto understandthan for modelswith distributed
memory and explicit messageassing.

During the discussionwe could not agreeon the performancelossesinvolved in
mappingthe abstractPRAM modelonto a realmachine.If this mappingis possible
withoutaddingasymptoticomplexitythe PRAMis likelyto be broadlyaccepted.
But this will be difficult to achievesincethe PRAM completelyignoreshe memory
hierarchiesof today s machines.

Dueto the lackof high-levelparallelanguagesan adequatepproacho parallel
programmings still to developa PRAM algorithm rst and thento translateit (by
handor compiler)to t thetargetmachine.

Modula-2*. Oneapproacho the abovejuestions Modula-2*whichis presented
in aseparatarticlein this volume .Modula-2* anextensiorof Modula-2js problem-
orientedn the sens¢hat the programmecanchoosandmix the degreef parallelism,
I.e., the numberof processorsand the controlmode (SIMD-likeor MIMD-like), as
neededy the intendedalgorithm. An interconnectionetworkis not directly visible

15

inthelanguagl shareatidrespacamongllprocessisisssumdéipugh
not the necessarilysharedmemory. There are no explicit messaggassinginstructions;
instead,readingandwriting locationsin sharedaddressspacesubsumemessag@assing.
Specialdata allocation constructshelp control the accesgimes in distributed memory.

On the featuresof parallel machinesthat should be visible in programming lan-
guagesve notedthe following. The numberof processorseeddo be availablgasa
constanbr variable),sincealgorithmshat adaptto the numberof processorsften
perform superiorcomparedo thosethat don t. However there aremany algorithmsfor
which simple, system-providedmultiplexing of processorq processor virtualization)
is sufficient. In thosecasesprogrammersshouldnot be forcedto programvirtualization
explicitly.

Wedo not think that programmersshouldbe forcedto specifymuchdetail concern-
ing data layout and network structure, sinceboth of thesetend to be major sources
of machinedependence.Instead, we should developtools that automatically or semi-
automatically embedthe data and accesgatterns into given hardwarestructures. Ex-
plicit messageassinghouldalsobe avoidedh high-levgbrogramminignguages,
becauset is tedious and error-proneto program massivelyparallel messagepassing,
and alsobecausemessag@assinginstructions are intimately tied to the way a problem
has been mapped onto a given architecture. Thus, messagepassingtends to cause
machindependent®atis dif cultto removandscale. '

Whereasin Modula-2* the organizationof the memoryis invisible, Knobe spokeout
in defenseof the visibility of local addressspaces.If locality is presentat the language
level, it simpli es dependenceanalysisand enhancesthe efficiency of the generated
code.

Recommendations for Parallel Architectures

The last part of the discussiorcenteredon recommendationgor parallel hardware. The
starting point wasa list of recommendationsvhich were collectedduring the work on
the compilerfor Modula-2* by Philippsenand Tichy.

0 Hardwarsupportorfastprocessreationsynchronizaticamdcontexswitch-
ing.
0 Sharedaddressspace. All processorsshould be able to generateaddressedor

the entire memory on the system. Eventhe front-end smemory shouldbe part of
that addresspace. [

For pointers, systemwide addressesre important, becauseotherwisethey would
haveto be simulated quite inefficiently in software.

0 Uniform memory accessnstructions. Most parallel machinestoday provide a set
of instructions for accessindocal memory,a secondone for accessingnemoryin
neighbors,and a third set for accessinglistant memory units. The differences
in speedare signi cant and thereforerequire that the compiler detectsthe faster
cases.However,it is oftenimpossibleto know statically for which caseto optimize.
For instance, we found that in many casesit was impossible to determine in
the compilerwhethera proceduravouldacces$ocal or non-locaimemory.The
generatedcodethus hasto checkall three casesat run-time. Sucha simple and
frequently repeatedcaseanalysiscould be donemuchmoreefficiently in hardware.

A sharedaddresspacedoesnot imply sharedmemory.

16

o Simulating shared memory. A sharedmemory in which a.llmemory units can
be accessedh the sametime would simplify programming and optimizing com-
pilers greatly. Latency hiding and randomization technicscould help achievea
reasonableapproximation of true shared memory. Latency hiding meansthat
eachprocessorcaninitiate severalmemoryreferencedeforereceivinga response.
Thus, the network serveseach processor gequestin a pipelined fashion. The
total network bandwidth of the network must be high enoughto acceptand serve
memory accessedor all processorsat rate that is comparable with accessego local
memory.

0 Autonomousaddressingcapability. An autonomousaddressingcapability means
that eachprocessorcan generateits own addressedor accessingnemory. The
ConnectioMachinefor examplegdoesnot havesucha facility - eachprocessor
mustusethe sa.meaddressanto its own, local memoryfor eachparallel instruction.
The lack of autonomousaddressingnot only makesmany applications awkward
to write, especially if they use pointers, but also precludes certain optimizations
in processor virtualization.

0 Singleinstruction set. SIMD machinestoday typically havedifferent instruction
sets for front-end and parallel processors. This property implies that the code
generator of the compiler has to be written twice. Also, each procedure hasto be
translated twice, doubling codesize. A singleinstruction set would simplify this
aspect.

0 Small instruction set. The Connection Machine, for example, offers about 400
instructions. Asin sequentiacompilers,only afew dozensof theseinstructions can
actually be generated. Clearly, a detailed study determining the most frequently
usedinstructions in parallel programsis desperatelyneeded.

Wednesday, 22. May 1991

Morning session
<> David G. Bradlee - RETARGETABLE INSTRUCTION SCHEDULING FOR
PIPELINED PROCESSORS

. Retargetablecodegeneratorsdevelopedn the last decadehavefocusedon instruc-
tion selectionfor complexinstruction set computers(CISCs). Thesecodegenerators
couldignoreinstruction schedulingand, in many casesgdid not perform global register
allocation. For reducedinstruction set computers (RISCs), however,the compiler s
emphasismust be shifted to instruction scheduling. In addition, register allocation is
at least, if not more, important for RISCs, becausethey typically havemore registers
and all computation requiresregisters.

Retargetability remainsimportant for RISCs,but the retargetability issuesare dif-
ferent than for CISCs. First, the machinespeci cation must capture most schedul-
ing information. Second,the interaction betweenregister allocation and instruction
schedulingis significant, becausethe schedulemeedsregistersto enableoperationsto
be overlapped.

My study of retargetableinstruction schedulingfor RISCs comprisesthree com-
ponents: the designand implementation of the Marion Code Generator Construction
System;the creation and analysisof codegenerationstrategies;and the investigation
of the interaction betweenstrategiesand architectural features.

17

Marion containsa codegeneratorgeneratorthat inputs a machinedescriptionand
outputs target-dependentdata. The machinedescription contains most of the infor-
mation necessaryto produce efficient code for RISCs, including instruction scheduling
requirements. Code generatorshavebeenbuilt for the MIPS R2000, Motorola 88000
and Intel i860, alongwith a numberof variations on thesearchitectures.

The code generation strategy refersto the invocation order of and level of com-
munication betweeninstruction schedulingand register allocation. | examinethree
strategies,including onel developedRASE, that integratesinstruction schedulingand
registerallocation. On a computation-intensiveworkload for three RISCs, RASE pro-
ducessigni cantly better codethan the Postpassstrategy, which doesnot integratethe
two phasesand slightly better codethan the other strategy, IPS, which integratesthe
two phasesto a lesser degreethan RASE.

In the investigation of the interaction between strategies and architecture, | vary
architectural features, including register set sizeand structure and operation and load
latencies, and examinethe effect acrossthe three code generation strategies. On a
computation-intensive workload, 64 registers yields a signi cant improvement over 32
for Postpass, but very little improvement for IPS or RASE.

0 John C. Ruttenberg & Stefan M. Freudenberger - PHASE OR-
DERING OF REGISTER ALLOCATION AND INSTRUCTION SCHEDULING

Register allocation and instruction scheduling are often separated due to the com-
plexity of each. But if registerallocation is performedbefore scheduling,it may intro-
ducearti cial data precedencekeepingthe instruction schedulerfrom doing its best
job. On the other hand, waiting until after schedulingto perform register allocation
may produce impossible schedules. In this paper we present a unied approach to
instruction schedulingand global (beyondbasicblocks) register allocation.

We assumethat we compile for a RISC machine with exposed pipelines and a large
amount of instruction set parallelism that must be statically specied. Instruction
scheduling is required in order to exploit any part of the performance potential of this
machine;without it, performancewould be very uncompetetive. We also assumethat
registersare often the most critical instruction schedulingresourcethereforewebelieve
that we must delay registerbinding decisionsuntil schedulingtime in order to give the
instruction schedulerthe greatestpossiblefreedomin picking registers.

This technique has beenusedin Multiow s Trace Schedulingcompilers,i.e., a
commercialquality implementationof theseideashas beendonethat showsthat this
approach is both viable and effective.

<*}rancoiBodinWilliamJalby Christin&isenbeiBanieWind-

heiser WINDOW-BASED REGISTER ALLOCATION

In this paper, we considerregister allocation optimization problem for loop array
referencesas a particular caseof memory'hieramemagementoptimization. This
permits us to exploit techniques for data locality estimation and improvement usu-
ally donein the frameworkof cacheor local memoriesmanagement.First werecall the
conceptof a referencewindow that servesasa goodtool for both data locality evalua-
tion and management.We presenta registerallocation procedurebasedon the window
concept which we show to be usable in a compiler system. Estimations of expected

18

speedupsare done. Then we study how loop restructuring techniques (interchang-
ing and tiling) can help improve data locality. Experimental speedupmeasurements
validating the interest of the approachare givenfor two RISC processors.

Afternoon session

<>Preston Briggs 8L Keith D. Cooper & Linda Torczon AGGRES-
SIVE LIVE RANGE SPLITTING

The importance of register allocation was recognizedwhen building the first op-
timizing compiler. Since that time, high-quality register allocation has remained an
important considerationin the designof optimizing compilers. Currently, graph color-
ing allocators dominate the eld.

Fabri and Chowhaveindependentlyobservedthat splitting a singlelive rangeinto
severalpiecesand consideringthe new, smaller live rangesseparatelycan producean
interferencegraph with lower chromaticity. Chow and Hennessyusedthis idea, called
live rangesplitting, asthe basisfor a newallocator that avoidedspilling when splitting
was possible.

Live range splitting has severalmerits. If an entire live range is spilled, asin
Chaitin s work, its value will residein a register only for short periods around each
de nition and use. Splitting allowsthe valueto stay in a register overlonger intervals

often an entire block or over severalblocks. With luck, the new live range will be
large enoughto extend overa completeloop.

Unfortunately, live rangesplitting is difficult. There aretwo fundamentalproblems:
picking live rangesto split and picking placesto split them. While optimal solution of
either problemis surely NP-hard, wehavedevelopeda collection of heuristic techniques
that extend Chaitin s allocator and cooperateto addressboth problems.

Aggressive live range splitting Observing that split points often become spill
points, we de ne split points on edgesentering and exiting loops with high register
pressure. To avoid choosing live ranges to split, we split all live ranges at each
split point.

Conservative coalescing If weallowedcoalescingo run asusual, all effectsof split-
ting would be removed. Instead, we usea limited form of coalescingto remove
excesssplitting wherethe colorability will not be adverselyaffected.

Biased coloring Conservativecoalescings unableto removeall excesssplits without
expensiveexaminationsof the graph. However,we can achievefurther coalescing
during color selectionby biasingthe color spectrumfor eachnodeto favor colors
that eliminate splits.

We have implemented these techniquesin an experimental allocator and the early
results are promising; however,a fair amount af additional work remains.

19

Thursday, 23. May 1991

Morning session
0 David Wall EXPERIENCE WITH A SOFTWARE ARCHITECTURE

Inconvenientor technology-dependerfeaturesof a processoican be hidden by sur-
rounding the actual hardwarewith a higher-levelarchitectureimplementedin software.
This high-level software architecture canbe usedasthe target of all high-levelcom-
pilers and asthe official assemblylanguagefor a machineor family of machines. The
implementation of the software architecture controls every bit of low-level code pro-
duced. This lets it perform very global optimizations that would be impractical or
unsafein a moretraditional compiler. Moreover,the softwarearchitecture can provide
instrumentation services that are more exible than those provided by hardware ar-
chitectures-. The Mahler software architecture for WRL s Titan family has provided a
framework for exploring thesepossibilities. Within it, we haveimplementedan inter-
module register allocator, a pipeline instruction scheduler,and a variety of high-level
and low-level performance analysis tools.

<> Annie Despland & Monique Mazaud PAGODE: AUTOMAL
DERIVATION OF BACK ENDS WITH PEEPHOLE OPTIMIZERS

PAGODE is a code generatorgenerator, basedon tree rewritings. The IR to be
input to the codegeneratoris a term of-an abstract data type suchthat the elementary
instructions act on cellsvia operatorsdenotingaccespath to cells. The target machine
speci cationis hierarchicallyorganizednto conceptscorrespondingo the main features
of the instruction setof the processor. locations, addressingnodes,instructions. The
semantics of each concept is speci ed by atemplate which is aterm of the same abstract
data type.

The instruction selectionstep appliesa setof rewriting rulesto the IR term. These
rules are driven by tree templatesderivedfrom the target machinespeci cation

Basically, each instruction of the IR is matched with an instruction template. In
the context of such an instruction template, the operands are matched with addressing
modestemplates. If an operanddoesnot match any addressingmode template and a
subterm does, then the location designatedby this subterm is stored in a temporary
location using a universalstore. The IR is rewritten usingthis temporary location.

The conceptsof temporary location and universal store enableto separateclearly
the register allocation phasefrom the instruction selectionone. Furthermore, this
allowsto make a clearcut betweenthe choiceof an actual storagefor a temporary and
the choice of its name.

The result of the instruction selectionstepis a sequenc®f instancesof instruction
templates. Sucha sequencaisesresourcesvhich are either actual resourcesor tempo-
rary resourcesof a universaltype of storage. It is necessaryo bind suchtemporary
with a set of valid actual storagetypes.

The register assignmentis performed by graph coloring taking advantageof the
results of the binding step.

Peephole optimization rules can also be applied. They are produced by the instan-
tiation of genericrules usingthe target machinespeci cation and somecomputations
on the semantics of instructions.

20

<>RalphE. Johnso®cCarlMc ConnelBL]. MichaeLake THE

RTL SYSTEM: A FRAMEWORK FOR CODE OPTIMIZATION

The construction of compiler front-endsis understoodwell enoughfor a great deal
of the work to be automated. This paper describestype RTL System,which helps
construct the rest of the compiler the optimizer by providing a exible set of
classeswith a large number of prede ned algorithms that the compiler writer can
customize. It alsoincludes a traditional table-driven code generator and peep-hole
optimizer. The RTL Systemdiffers from systemsto construct compiler front- and
back-endsbecauseit doesnot specify the optimizations with a specializedlanguage,
but is insteadan object-orientedfamework.This paperdescribethe frameworkand
how it can be used to build a code optimizer.

<> Mahadevan Ganapathi PRoLoG BASED COMPILER BACK-END
GENERATION

Prolog is used as a back-endlanguagefor the speci cation and implementation of
optimizing codegenerators. It is usedto reformulate pattern-matching codegenerators
and implementretargetable compiler back-ends.A comprehensiveset of optimizations
is integratednto this frameworkanduniformlyappliedto producehigh quality code.
The more precisethe optimization rules are, the better is the discrimination.

Afternoon session
<> David. Wall SYSTEMS FOR LATE CODE MODIFICATION

Modi cation of codeatfter it hasbeengenerateds usefulfor a variety of applications
including somekinds of late optimization and many kinds of high-level and low-level
instrumentation and simulation. Two systemsthat havebeendevelopedor doing this
are the code modi cation part of my Mahler systemand the pixie tool developed
independently at Mips.

The Mahler codemodi er is part of the linker, and modi es object modulesasthey
are being linked. This has severaladvantages. An object le contains a relocation
dictionary andloadersymboltable, soMahler canrecognizeaddressreferencesand can
correctthem to re ect the changesmade. The symbol table also providesa channel
for additional information that the compilercanincludeto explain tricky things in the
compiled code.

Mahlerhasthe addedadvantagthat the Mahlercompileproducesill ofthe object
modules:it servesboth asthe backend of all high-levelcompilersand alsoasthe only
availableassembler.This meansthat any coding conventionsfollowed by the Mahler

compilerare guaranteedto hold throughout the entire program.

Mahlerhasthe disadvantagehat the linkeris nonstandardMoreovera userwho
requestsa particular application must re-link the program, and so must know what
object modules and libraries make up the program.

The pixie systemworks differently. Pixie modi es an executable le that has al-
readybeenfully linked. The relocationdictionariesare gone,andthe loadersymbol
table maybe goneaswell. This meanghat a usercaninvokepixie on an executable
without knowingor caringhowit wasbuilt. Howeverit alsomeanghat pixie must
be conservativein many ways: for instance, eachindirect jump in the original code
is replacedby a sequencef instructionsthat jumps via a hugeaddresdranslation

21

table incorporated into the modi ed executable. This kind of overhead makes pixie an
unsuitable medium for modi cations that optimize, though it is still very convenient
for modi cations that instrument.

| am exploring two intermediate points betweenMahler and pixie.

The rst is dixie, which acts on an executableas pixie does,but assumeghat
it wasgeneratedusing the Mips compiler conventions.Most executablesnclude some
assemblycodefrom libraries, which might not follow these conventions,so dixie looks
for library routinesthat it knowsviolate the conventionsbut that it can understand
anyway. In many caseghis allowsdixie to modify a program without needingthe big
jump table, though programsthat contain unexpectedindirect procedurecalls must
still include the table.

The seconds epoxie whichassumeshat the programhasbeencompletelylinked
using an incremental linker that leavesthe relocation dictionaries in place. (Unix
linkers normally have an option that doesthis.) This giveswaxie someof Mahler s
advantageswithout requiring modi cations to the standard linker. A jump table is
neverrequired, and the codemodi cation processcan (I hope) be unintrusive enough
to use for optimization aswell as for instrumentation.

<>Susan Graham PATTERNS, TRANSFORMATIONSAND ATTRIBUTES

As part of our researchon dynamic compilation, John Boyland and | draw on some
results of Charles Farnum from his December 1990Ph. D. dissertation, titled Pattern-
Based Languagesfor Prototyping of Compiler Optimizers. The pattern language, used
for rewrite systems compiled into bottom up regular tree automata, is an extensionof
the usualtree pattern languages.The additions include typed wildcards (wheretypes
are setsof regulartree patterns), horizontal iterations to support operationsof varying
,arity,andverticaliterationgo handlerepetitiveconstructsuchasleft-associative
addition trees. An attribute systemis organizedaround the enrichedpattern matching
systemto support factoring of the description by attributes rather than by abstract
syntax rules.

0 John Boyland 8: Susan L. Graham CODE GENERATION FOR
DYNAMIC COMPILERS

The designof dynamic compilers,that is, compilersthat preserveexecution state
when newly compiled codeis patchedinto an executingimage, presentsthe compiler
writer with a number of difficulties. First, all the complexity of a standard compiler
is present. Second,enoughintermediate information must be maintainedto allow the
compilation to proceedincrementally. Third, the incrementalincorporation of newly
compiledsegmentof codemust disturb the existing executionstate aslittle aspossible.
All of thesefactors are compoundedwhen the desiredlevel of granularity is small,
suchas at the level of statementsor expressions.We describeour proposedmethod
for automaticallygeneratinglynamiccompilersaand explainhowthe methodhandles
these issues.

22

<>Robert R. Henry SMALL, FASTAND OPTIMALINSTRUCTIONE-
LECTORS AND SOME SOANDALOUS POTENTIAL APPLICATIONS

Bottom-uptreepatternmatcherdasedn BURStheoryarebecominghe method
of choicefor instruction selection. Although building the tablesfrom a tree grammaris
both complexandexpensivahe nal tablesareconsumedy a simpleandintuitively
appealinginterpreter invokedwhentraversingthe tree. By folding the interpreter into

the tables and carefully choosingbetweentables and specializedhand code, BURS
tables can be encodedinto a small amount of spaceand be usedto drive a very fast
pattern matcherand selector. Typical sizesare40kByteswith aratio of 300instructions
executedto instructions generated.

This fast codegeneratotet us contemplatgeneratingbjectcodefor immediate
use.Selfmodi ng code for appropriatedefinitionsof self and modify cannowbe
contemplated,abstractedand efficiently implemented.

<>Christopher W. Fraser SPECIFYINGCODE GENERATORS

This talk will describeexperiencewith three different code generator generators
and their speci cation languages.The rst systemwasbasedon a peepholeoptimizer
driven by a formal descriptionof the target machine. This approachwasadaptedfor
usein the Gnu C compiler,soits practicality hasbeenproven. More recentwork shows
that the specications can be particularly succinct.

The secondsystemis basedon a languagefor conciseexpressionof hand-written
peepholeoptimizations. Speci cationstake 100-200linesand compileinto afast, mono-
lithic programthat acceptsdagsannotatedwith intermediate code,and generatespp-
timizes,and emits codefor the target machine. Thesecodegenerators&re usedin
Icc, a compilerfor ANSI C on the VAX, Motorola 68020,SPARC,and MIPS R3000.
Its local codeis comparablewith that from other generallyavailable C compilers,but
the compiler is much smaller and faster. lcc has seenproduction use at Princeton
University and AT&T Bell Laboratories for over two years.

The third systemusesBURS theory, in one of its early applicationsin a produc-
tion compiler. The systemis under development,but early experiencehas exposed
unexpectedchallenges. For example,in at least one case,it has been necessaryto
encodehand-written peepholeoptimizations as BURS grammar rules; shorter, clearer
encodingareavailable At leastonefull codegeneratoshouldoe completdéeforehe
conference.The talk will describethe engineeringrequiredto use BURS theory in a
production compiler.

Theapproachdsavedifferenstrengthsfor examplethe rst acceptspecifications
that arethe closesto apuredescriptiorofthe machinethe seconds the most exible,
and the third is the most attractive from a formal viewpoint. The talk will present
the pros and consof the competingapproachegjiscusghe prospectgor reducing
the trade-offdetweernhem,andarguefor generatingll codegenerator§om pure
machine descriptions.

23

Discussion on Code Generator Specication Techniques

Led by Chris Fraser
Summarizedby John Boyland and Helmut Emmelmann
Major participants:
John Boyland, Helmut Emmelmann, Robert Giegerich, Susan Graham,
Robert Henry, Uwe Kastens,Bill Waite, David Wall

Code generator speci cations

The discussionstarted with some more questionson Chris Fraser stalk: Robert

Giegerichsuggestedspecifying code selectionusing a description (in the spirit of the

systemproposedby Helmut Emmehnannin his presentation) to separaterules about

the machinedescriptionfrom codetransformationrules. A code generatordescription
V would perhapsbe split into the following parts:

0 machinedescription
o IL description
0 term rewriting rules
0 optimizations

Chris Fraserfelt that this may lead to overly verbosedescriptions, and in particular,
the IL descriptionshouldnot be part of codegeneratordescription. It wasagreedthat
this topic is still research.

Chris Frasercontinuedthe discussiorby askingfor suggestiongor acommonBURS
tool. He mentionedthat severalresearchgroupshad already started to developtheir
own. In order to reduceredundantwork, it would therefore be desirableto haveone
freely available BURS tool. Chris Frasercould developsucha tool, but then AT&T
would own it. Robert Henry hasa BURS tool (altogether about 25000lines of code)
but notime to adapt it for generaldistribution. Howeverit is not time critical to finish
the commonBURS tool, becausdor experimentsand for debuggingof speci cations, a
implementation basedon the Aho/ Johnsondynamic programmingalgorithm (DP) can
be used. Only for a production compilerwould the BURS tool be necessaryto make
it run fast. Evenwith the BURS tool available,it would be desirableto continue to
distribute the DP tool for debuggingpurposes.

Discussionthen centeredon de ning a standard input format and in particular on
the method forspecifying actionsand costsfor eachBURS rule, sothat development
of BURS code generatorscan go forward. Bill Waite observedthat BURS technology
couldbe usefulfor applicationsother than codegenerationfor example,operator
identification; and thus the input format, and in particular the action clause,should
not be codegenerationspeci c. Uwe Kastensraisedthe issueof specifyingother types
of costs, such as pipeline costs, but SusanGraham remarked that BURS can only
handle integer cost valueswhich combineadditively; otherwise compile time dynamic
programming becomesnecessary.Rather than precludeother applications, therefore,
andin orderto avoidhandlingnotationalconvenienc@sdiscussetielow),the group
agreedon a simple low-levelinput format with integercostsand integer action numbers.
Compilemwriters wouldthen befreeto develoextended BURS (EBURS)processors
that would usethe low-level BURS tool to do the sophisticatedwork and that would
implementa customizedersiorof the input language Therewasno discussioon a
standard output format for the low-levelBURS translator.

24

Extending BURS

After a short break, Chris Fraser raised the following issues he had noticed when he
was writing BURS speci crintions:

1. how could factoring be handledin an extendedBURS (EBURS) ?
2. how could DAGs be handled *?
3. how could schedulingbe handled ?

4. how shouldone split codegeneratorspeci cationsinto a machinedescriptionand
rewrite rules ?

Factoring of BURS descriptions

Chris Fraseraskedhow factoring could be expressedn a EBURS-language. The fol-
lowing exampleof problem (whichis part of the Chris Fraser sVax description) shows
that factoring (here,factoring on binary operators)is desirable:

expd: (BIN,D,xd,xd)

Factoring should also simplify certain recurring patterns, here demonstratedwith
the assignment operator:

stmt: (ASGN,D,inx8,expd)
stmt: (ASGN,F,inx4,expf)
stmt: (ASGN,1,inx4,expl)

stmt: (ASGN,S,inx2,expw)
stmt: (ASGN,C,inx1,expb)

similarly for ARG, LOAD, 3 (in the place of ASGN)

The Vax description becameabout 40% shorter with factoring using ad-hoc regular-
expression-like patterns. Robert Henry proposed using some textual macroprocessing
mechanism.Chris Frasersaidhewould prefersomethingmore powerfuland cleaner,but
will usemacroprocessingf nothing elseis found. Bill Waite askedif it would be enough
that the system allow the programmerto specify the correspondence®/inx8/expd,
F/inx4/expf, etc., to be usedin rulesfor ASGN, ARG and LOAD. No agreemenbn a
standard factoring method wasreached.

ApplicatiofBURSo0 intermediateodan.DAGform

The problem faced herewascodegenerationfor a DAG where sharednodesrepresent
commonsubexpressionsOne doesnot alwayswant to allocate a registerfor common
subexpressions:even_ignoringthe issuesof register pressure,the code may end up
longer! For example on the VAX, most addressingnodesprovide free computation of
register + constant and immediate data (32 bits); thesefree quantities should not be
assignedto registers. Other machineshave different free operands: on MIPS, only 16
bit signedconstantsare freeand only in certain situations (as right operandsof ADD
etc).

)The bottom-up phaseof a BURS automatonworks with DAGs. The codeemitter,
working top-down, could count visits and for eachnode do one of the following things:

0 generate the code as normal BURS does

25

0 evaluatethe sharedsubtreeinto a registerand rememberthe register assigned

o not produce codefor the sharedsubtree,but instead reusethe value storedin a
register before
The secondand third alternative howeverrequirethat BURS hasdecidedto placethe
result of the subtree into a register.

Chris Fraseridentified two problemswhen producing codefor DAGs usinga BURS
code selector:

o howto nd out or howto specifywhich expressionsre free (and shouldtherefore
not be placedinto a register)

0 howto forcethe codeselectorto put somethinginto a register

Forthe rst problemJohn Boylandproposedo just usethe costvaluesin the
description, addressingmodeswould havezero costs. Robert Henryremarkedthat we
had to be careful: costsnot alwaysassignedn the right placesin a description.

Then Bill Waite proposedto add new rulesfor free productions:

Before:
X (freel)

X : (free2)
Y :use(X) (free)
Z : use(X) (costs)

After:
.freel)

(free2)

—<Xaa

For the secondproblem, how to get copyinto a register, Robert Henry proposedto
inserta copyto aregisterin the DAG onthe bottom-uppassjf wenoticeweneedo
put it in register. Bill Waite proposedto do it on the top-down pass (when we emit
code)jf asubtreaedoesn havezerocostwecalculatet into aregisterandthenusethe
registerat the node. HoweverDavid Wall remarkedthat this would not work because
a pattern may match over the DAG join.

Then Helmut Emmelmannproposedto add a DAG operator into the intermediate
languageand to put in rules which force the subtree below the DAG operator to be
evaluatedinto a register. Robert Henryproposedhe following rules for DAG:

reg:. DAG(X) 1 +- cost
Xf: DAG(Xf) O

Finally the group cameup with a better solution:

reg: DAG(reg) O
Xf . DAG(Xf) O

Thesdawo rulesforceeverythingoelowDAG into a register(rst rule) unlesst isfree
(secondrule). D

Problem 3 and 4 werenot handledin the discussionasthey were consideredstill
research topics.

26

Friday, 24. May 1991
Morning session
<>Hugh Osborne - UPDATE PLANs

It is a truism that a programme is a function from machine state to machine state,
composed from the functions represented by individual machine instructions. How-
ever, specifyingtheseinstructions in a functional formalism is often unwieldy and fre-
guently far removedrom potential concreteimplementations. If a prototype implemen-
tation is producedusing a functional languageit is usually unnacceptablyinefficient.

Other abstract machinespeci cation methodsalsohavedrawbacks. Transition sys-
tems quickly reachtheir limit of readability, writability and comprehensabilityas the
structure of machine con gurations becomescomplex. An imperative programming
style is often ad hoc and quite often contains (hidden) machine dependance.An in-
formal description is often incomplete and hard to implement. In recent years the
Bird-Meertensformalism has beengaining in popularity. Work on abstract machine
descriptionin squiggolhas beendone, and hasindeedled to new insights into classes
of abstractmachinesbut it is still a major stepfrom a squiggol programme to aVon
Neumann implementation.

Update plans, proposed as a method for low level speci cation, have now been de-
velopedinto a high levellanguagefor specifyinglow levelactivities. They areamenable
to interpretation asspeci cationsof machinestate transitions while maintaining a great
deal of similarity to low level code,thus allowing for efficient hand compilation to, for
example, assembler.

A compiler for a subset of update plans is currently under development. The aim
is to produce a seriesof compilers,ranging from compilersproducing innef cient code
but providing a wide range of compile and"runtime trace and debuggingfacilities, to
optimising compilersproducing rapid prototypes. A preliminary compilerwastestedon
a speci cation of an abstract machinefor a simple functional language. The resultant
codewasof the sameorder of efficiencyasthe Miranda system(Miranda is a trademark
of ResearchSoftwareLimited). A speci cation of a more complex abstract machine,
for a logical functional language,using update plans is planned, which will then be
implemented.

Update plans havealsosuccesfullybeenusedasa teachingaid in the undergraduate
compiler construction courseat the University of Nijmegen, where they are used to
specifythe implementation of an imperative language.

<>Veldhuijzen van Zanten - CODE GENERATIOMASEDoN A FORMAL
MACHINE MODEL

We presenta formal machinemodel and usethis to derive a code-generatiortech-
nique. In the -model cellsand values,which constitute the machinestate, play a central
role. The machinestate is modi ed undercontrol of a programthat is a syntactic object
consistingof a sequencef assignments Eachassignmentssignsa value expressionto
a cell expression. A genericlanguageis built around these concepts,so that we can
talk about them without havingto resortto somespeci c target-machinearchitecture.
The denotational semanticsof this genericlanguageare describedin the rst part of
the paper. Due to the preciseformal nature of the machinemodel, we are able to give
a precisede nition of the code-generatiorproblem. This de nition demandsa code
generator to

27

0 be correct,

o0 be complete,i.e. ableto generatecodefor any program,
0 generate ef cient code, and

o be ef ciently implementable.

Usingthis de nition, wederivea code-generatioralgorithm. Asin other techniques,
instructions are modelled by templates that can be glued together in order to construct
a program. In traditional techniques,data- ow dependenciesare usedto glue the
templates together. In our model, however,the glue modelsthe control ow. As a
consequence,we can handle instructions with multiple effects in a uniform way. The
data- ow dependencieshowever,impose more complex conditions on the rewriting
process. As template matching and an equivalent of register-transferlists form the
basisof the algorithm, it can be seenas a middle road betweentemplate-matching
schemess describedby Giegerichand the Davidsonand Fraserapproach.

The algorithm is basedon rewriting program terms using the following scheme.
A program p is examined in order to identify a useful instruction | so that there
exists a reducedprogram p for which the composition of the effect 6(1) of I and p
is semantically equivalentto p. The reducedprogramp can be seenas an optimized
versionof p, where the knowledgethat | is already executedis exploited in order to
reducethe cost of the program.

To exploit the inherentfreedomof choicein selectinginstructions and in optimizing
the reducedprogram, we rewrite jungles instead of program terms. Junglesare data
structures that incorporate part of the data ow in addition to the program structure.

0 Bettina Buth 8c Karl-Heinz Buth AN APPROACH TO AUTOMATIC
PROOF SUPPORT FOR CODE GENERATOR VERIFICATION

In principle, program veri cation is the only adequatemeansto ensurethe cor-
rectness of software with respect to precise or formal speci cations. But since realistic
programsand especiallycodegeneratorsand other parts of compilerstend to be large
and complex, somemechanicalsupport is necessaryfor the veri cation of thesepro-
grams. In this paper we present the ideas of the veri cation support system PAMELA
that is intended for the veri cation of programswritten in a subsetof MetalVthat are
speci ed by pre- and postconditions. PAMELA organizesthe proof for suchprograms
and is basedon a specialkind of term rewriting.

<> C.A.R.. Hoare, He Jifeng, Jonathan Bowen and Paritosh Pandya
AN ALGEBRAIC APPROACH TO VERIPIABLE COMPILING SPECIFICATION

/95\7ND PROTOTYPING OF THE PROCOS LEVEL 0 PROGRAMMING LANGUAGE

A Compiler is speci ed by a description of how each construct of the source language
Is translated into a sequencef object codeinstructions. The meaning of the object
code can be de ned by an interpreter written in the sourcelanguageitself. A proof
that the compiler is correctmust showthat interpretation of the object codeis at least
good (for any relevant purpose) as the correspondingsourceprogram. The proof is
conductedusing standardtechniquesof data re nement. All the calculationsare based
on algebraiclaws governingthe sourcelanguage.The theoremsare expressedn aform
closeto a logic program, which may usedas a compiler prototype, or a checkon the

28

results of a particular compilation. A subsetof the occam programming language
and the transputerinstruction set are usedto illustrate the approach. An advantageof
the method s that it is possibleto add new programming constructswithout affecting
existing development work.

Afternoon session

O Robert Giegerich WHAT CANWE EXPECTFROMFORMALCODE
GENERATOR SPECIFICATION AND VERIFICATION TECHNIQUES?

Oneto the growingconcernfor hardwareand softwarereliability, mechanicalassis-
tancein correctnessproofsis required. We can distinguish two suchapproaches.The
first approachtranslatesthe designinto somewell-known logic, and usesan existing
theorem prover for validation. The secondapproachstarts from problem oriented no-
tationsand conceptsirying to formalizetheseto obtaina problem-speci @alidation
system. The talk sketchessariousaproachesof both kinds, tring to evaluatetheir rel-
ative strenghts and weaknesses. This is intended to spawn discussion on the viability
of the formal approaches.

References

[BMW88]lurgermBiirstler UllriciMonckeandReinhar@Vilhelm.Tablecompressitor tree

automata. Technischer bericht, Universitat des Saarlandes, 1988.

[EPL88] SusanGrahamE. Pelegri-Llopart. Optimal codegenerationfor expressiontrees: An
application of burs theory. In Proceedingof the 15th Symposiumon Principles of
ProgrammingLanguagespages294-308,1988.

[Gie90a] Robert Giegerich. Codeselectionby inversion of order-sorted derivors. Theoretical
ComputerScience(73):177 211,1990.

[Gie90b] Robert Giegerich. On the structure of veri able code generator speci cations. In
Proceeding®f the SICPLAN Conferenceon ProgrammingLanguageDesignand Im-
plementation,pagesl1-8, 1990.

[HO82] Hoffmannand O Donnel. Pattern matching in trees. Journal of the Associationfor
Computing Machinery,29(1):69 95, January 1982.

[Kro75] H. Kron. Treetemplatesand subtreetransformational grammars. PhD thesis, Uni-
versity of California, 1975.

M6ng0] UllrichMonckeAnincrementahddecrementgéneratdor treeanalyseBericht
A80/3, Universitat desSaarlandesfFB10, 1980.

[wwss] Weisgerberand Wilhelm. Two tree pattern matchersfor code selection. In Lecture
Notesin ComputerScienceyolume371,pages_215 229]1988.

29

Bisher erschieneneaund geplanteTitel:

W. Gentzsch,W.J. Paul (editors):
ArchitectureandPerformanceDagstuhl-Seminar-Repoft; 18.-20.6.1990(9025)

K. Harbusch, W. Wahlster (editors):
TreeAdjoining Grammars 1st.IntemationalVorshopon TAGS:FormalTheoryandAp
plication, Dagstuhl-Seminar-Report;2, 15.-17.8.1990(9033)

Ch. Hankin, R. Wilhelm (editors):
Functional LanguagesOptimizationfor Parallelism,Dagstuhl-Seminar-Repor8, 3.-
7.9.1990 (9036)

H. Alt, E. Welzl (editors):
Algorithmic Geometry Dagstuhl-Seminar-Repo#;8.-12.10.199@9041)

J. Berstel , J E. Pin, W. Thomas (editors):
AutomataTheoryandApplicationsin Logic andComplexity,Dagstuhl-Seminar-Report;
5, 14.18.1.1991 (9103)

B. Becker, Ch. Meinel (editors):
Entwerfen, Prifen, Testen, Dagstuhl-Serninar-Report;6, 18.-22.2.1991 (9108)

J. P. Finance, S. Jahnichen,J. Loeckx, M. Wirsing (editors):
Logical Theory for ProgramConstruction,Dagstuhl-Seminar ReporT, 2S.2. 1.3.1991
(9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
ParallelandDistributedAlgorithms,Dagstuhl-Seminar~Rep@t4.-8.3.1991(9110)

M. Broy, P. Deussen,E.-R. Olderog, W.P. de Roever (editors):
ConcurrentSystemsSemanticsSpeci cation,andSynthesispagstuhl-Seminar-Report;
9, 11.-15.3.1991(9111)

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors):
Integration of Functionaland Logic ProgrammingPagstuhl-Seminar-Report0, 18.-
22.3.1991 (9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; Il, 15-
19.4.1991 (9116)

B. Nebel, C. Peltason, K. v. Luck (editors):
TerrninologicalLogics,Dagstuhl-Seminar-Repoit2,6.5.-18.5.19919119)

R. Giegerich, S. Graham (editors):
Code Generation- Concepts,Tools, TechniquesDagstuhl-Seminar-Reportl.3, 20.-

24.5.1991 (9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
RandomizedAlgorithms,Dagstuhl-Seminar-Repoit4,10.-14.6.19919124)

J. Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processingn Object-OrientedComplex-Objecand NestedRelation Databases,
Dagstuhl-Seminar-Report; 15, 17.-21.6.1991(9125)

M. Droste, Y. Gurevich (editors):
Semantic®f Programmind.anguageandModelTheory,Dagstuhl-Seminar-Report6,
24.-28.6.1991 (9126)

G. Farin,H. HagenH. Noltemeier (editors):
GeometricModelling, Dagstuhl-Seminar-Repofi7,1.-5.7.1999127)

A. Karshmer, J. Nehmer (editors):
OperatingSystemf the 1990sPagstuhl-Seminar-Repod8,8.-12.7.19919128)

H. HagenH. Miiller, G.M. Nielson(editors): T
Scienti ¢ Visualization,Dagstuhl-Seminar-Repd®,26.8.-30.8.99135)

T. Lengauer,R. M6hring, B. Preaqeditors):
TheoryandPracticeof PhysicalDesignof VLSI SystemsDagstuhl-Seminar-Repo?0,
2.9.6.9.91 (9136)

F. Bancilhon, P. Lockemann, D. Tsichritzis (editors):
Directionsof FutureDatabas&esearchpagstuhl-Seminar-Repdt,9.9. 13.9.91

H. Alt, B. Chazelle, E. Welz (editors):
ComputationalGeometryDagstuhl-Seminar-Rep@2,07.10.-11.10.919137)

F.J.Brandenburg J. Berstel,D. Wotschke(editors):
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report
23,14.10.-18.10.91 (9142)

H. Comon, H. GanzingerC. Kirchner,H. Kirchner,J.-L. Lassez, G. Smolka(editors):
TheoremProving and Logic Programmingvith Constraints Dagstuhl-Seminar-Report
24,21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
DataStructuresPagstuhl-Seminar-Rep@5,4.11.-8.11.919145)

A. Borodin,A. Dress,M. Karpinski(editors):
Ef cient InterpolationAlgorithms,Dagstuhl-Seminar-Rep&®,2.-6.12.91(9149)

B. Buchberger). DavenportF. Schwarzeditors):
Algorithmsof Computeralgebrd)agstuhl-Seminar-Rep@t, 16..-20.12.919151)

