
Robert Giegerich, Susan L. Graham (editors):

Code Generation - Concepts,

Tools, Techniques

Dagstuhl-Seminar-Report; 13
20.-24.5.1991 (9121)

ISSN 0940-1121

Copyright © l99l by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadem, Germany
Tel.: +49-6871 - 2458

Fax: +49-6871 - 5942

Das Intemationales Begegnungs- und Forschungszentrum für Infonnatik (IBFI) ist eine gemeinnützige
GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter
und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen
durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. José Encamaqao.
Prof. Dr. Winfried Görke.
Prof. Dr. Theo Härder,
Dr. Michael Laska,

Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universität des Saarlandes.
' Universität Kaiserslautem,

Universität Karlsmhe.
Gesellschaft für Infonnatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland Pfalz.

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes

W - 6600 Saarbrücken

Germany
Tel.: +49 -681 - 302 - 4396

Fax: +49 -681 - 302 - 4397

e-mail: of�ce@dag.uni-sb.de

Workshop on Code Generation

Schloß Dagstuhl, May 20-24 1991

organised by

R. Giegerich and S. L. Graham

Summary

The goal of the workshop was to evaluate the state of the art and to point out the major
directions of research in code generation for the coming years. Most of the contributions were
arranged around four topics:

0 Tools and techniques for code selection

0 Code generation for parallel architectures

9 Register allocation and phase ordering problems

o Formal models and validation

Besides these, there were contributions on some new topics such as dynamic compilation or
object-oriented methods for code generation.

The workshop had 36 participants, 20 from Europe and 16 from the USA.

Tools and techniques for code selection

It is widely agreed that tree pattern matching is the technique of choice for code selection. Much
discussion was devoted to relating the BURS approach, tree parsing and the new approach of
�regular controlled rewriting�. While the pure matching problem seems solved satisfactorily, the
big problem to be solved is the integration of the pattern driven code selector with other code
generation tasks. �Considerate code selection� allows to postpone decisions in the code selection
phase. By contrast, existing tools incorporate a speci�c way of where decisions are made.

An engaged discussion on speci�cation techniques (a protocol of this discussion is included) lead
to the decision that a group of the participants would cooperate to make a pure BURS system
available for public distribution.

Code generation for parallel architectures

Coarse grain parallelism: This topic is characterised by attempts to provide a high-level, archi-
tecture independent model of parallelism to be used in programming and, on the other hand,
programming techniques and languages features that expose the architecture to the program-
mer. The latter reduces compiler complexity, but also program portability. A summary of the
discussion of this topis is included.

Fine grain parallelism: While a general model of pipeline scheduling is still not available, some
comparative results for different RISCs and different scheduling techniques are now available. It
is open how to characterize the class of machines for which these results are valid. As expected,
interaction between scheduler and register allocator is crucial.

Register allocation and phase ordering

Register allocation interacts with all code generation tasks. Contributions treated techniques
for code rearrangement, life range splitting and multi-level window models.

Formal models and validation

Formal methods try to enhance the reliability of code generators by providing a declarative
meaning of code generator descriptions and formal proof techniques. A number of interesting
approaches were presented. Some (parts of) simple code generators have been proved correct
mechanically, some more realistic ones have been proved �by hand�, but the effort is usually
immense. Currently, no proof techniques are available for the code generation techniques actually
used in practice. Both sides must advance - future tools should provide a declarative semantics,
and validation methods must be geared to code generation techniques.

Acknowledgements

The workshop provided an excellent forum for the exchange of ideas, bringing together groups of
experts that are unlikely to meet at the side of a more general conference. Strong participation
from the USA was made possible byla travel grant from NSF.

The concept and implementation of the Dagstuhl Institute was accepted enthusiastically by the
participants. The charming surroundings and the relaxed, but highly professional management
helped to make this workshop a pleasant and rewarding experience.

Participants Emmelmann, Helmut
GMD an der Universität

Karlsruhe

B°dina Ffafltjois Haid-und-Neu-Str. 7
IRISA - Campus de Beaulieu 7500 Karlsruhe
p��� p��� Cedex Germany
France emme10kar1sn1he.gmd.dbp.de
francois.bodin0irisa.fr

Fédéle, Carine
I3S-CNRS

Bowen� J°na_than Université de Nice
Oxford Umv. Comp. Lab. 250 Ave� A. Einstein
P�°5"��mi�5 Reseach G�? 06560 Sophia Antipolis
11 Keble Road France
Oxford OX1 3QD carineQcerisi.cerisi.fr
England
Jonathan . Bowen�prg . oxford . ac . uk Ferdinand, Christian

Universität Saarbrücken

F B Informatik

Im Stadtwald 15

6600 Saarbrücken 11

Boyland, John
Computer Science Division - EECS
University of California
511 Evans Hill Germany
Berkeley, CA 94720 ferdmcs .un1-sb .de

USA _ Fisher, Josh
boylandcsequon . berkeley . edu Hew1ett_PaCkard Labs

30 Griggs Road
Bradlee, David (;_ Brookline, MA 02146

University of Washington USA
Dept. of Compter Science, FR -35 5f5-3h°1'°hP1ab3Z»hP1 -hP-C°m
Seattle, WA 98195
USA

dgbccs . washington . edu

Fraser, Christopher W.
AT&T Bell Labs

600 Mountain Ave 2C-464

Murray Hill, NJ. 07974
Briggs, Preston USA

Rice University cwforesearch. att . com
Dept. of Computer Science
p_(). Box 1392 Freericks, Markus
Houston, Texas, 77251-1892 TU Berlin
USA 1000 Berlin
prestonct itan . rice . edu Germany

mfxcmozart . cs . tu-berl in . de

Buth, Bettina Freudenberger, Stefan
Institut für Informatik Apollo Systems Div.
Universität Kiel Hewlett Packard

Preußerstr. 1 - 9 300 Apollo Drive
. 2300 Kiel 1 Chelmsford, MA 01824

Germany USA
bb�causun . uucp stef ancapollo . hp . com

Ganapathi, Mahadevan Kastens, Uwe
Computer Science Division Universität-GH Paderborn
University of California Davis FB Informatik
Davis, CA 95616 4790 Paderborn
USA Germany
ganapathocayenne . eecs . ucdavis . edu uweouni-paderborn . de

Giegerich, Robert Keßler, Christoph W.
Universität Bielefeld Lehrstuhl für Rechnerarchitektur

Technische Fakultät FB 14 Informatik der

P.O.Box 8640 Universität des Saarlandes

4800 Bielefeld 1 Im Stadtwald 15, Geb. 36, Zi. 114
Germany � 6600 Saarbrücken
robertotachfak . uni-bielafeld . de Germany

kess1er0cs.uni-sb.de

Graham, Susan L.
Computer Science Division - EECS Knobe, Kathleen
University of California Compass Inc.
511 Evans Hill 550 Edgewater Drive
Berkeley, CA 94720 Wake�eld, MA 01880
USA USA

grahamosequoia . berkeley . edu knobeocompass . com

Hatcher, Phil Kroha, Petr
Dept. of Computer Science Fachbereich Informatik
Univ. of New Hampshire Fachhochschule Dortmund
Kingsbury Hall Postach 10 50 18
Durham, N H 03824 Germany
USA krohaczuse . informat ik . uni-dortmund . de

pjh0cs.unh.edu

Krzyzanowski, Paul
Henry, Robert R. Paul Krzyzanowski

University of Washington AT&T Bell Laboratories
CS & E Dept., F R-35 600 Mountain Ave.
Seattle, WA 98195 Murray Hill, NJ 07974
USA USA

rrh�tera . com paul�research . att . com

Hogenkamp, Horst Lake, Mike
Universität Bielefeld Dept. of Computer Science
Technische Fakultät 2413 Digital Computer Lab.
Postfach 86 40 1304 West Spring�eld Ave.
4800 Bielefeld 1 Urbana IL 61801

Germany USA
horstotechfak .uni-bielefeld . de jmlake�kant . cogsci . uiuc . edu

Mazaud, Monique Veldhuijzen van Zanten, Gert E.
INRIA-Rocquencourt Faculteit Informatica INF/TO H303
Domaine de Voluceau Universiteit Twente

B.P. 105 - 78153 P. O. Box 217

Le Chesnay Cedex 7500 AE Enschede
France Netherlands

mazaudcminos . inria. fr veldhvzccs �utwente .n1

Osborne, Hugh Waite, William M.
Department of Informatics Department of
University of N ijmegen Electrical and Computer Engineering
Toernooiveld 1 University of Colorado
6525 ED Nijmegen Boulder, CO 80309-0425
Netherlands USA

hugh0cs.kun.n1 waite0bou1der.co1orado.edu

Pfahler, Peter Wall, David
Universität Paderborn DEC � Western Research Lab

Warburger Str. 100 100 Hamilton Ave
P.O.Box 16 21 Palo Alto, CA 94301
4790 Paderborn USA

Germany wallcdecwrl . dec . com
pet erodonar . uni-paderborn . de

Wilhelm, Reinhard
Philippsen, Michael . Universität Saarbrücken

Fakultät für Informatik F B Informatik

Universität Karlsruhe Im Stadtwald 15

Am Zirkel 2 6600 Saarbrücken 11

7500 Karlsruhe Germany
Germany wilhelmocs . uni-sb . de
phl ippcira . uka . de _

Wolczko, Mario
Tichy, Walter F. Dept. of Comp. Science

Fakultät für Informatik University of Manchester
Universität Karlsruhe Manchester M13 9PL

Am Zirkel 2 England
7500 Karlsruhe marioccs �man. ac .uk

Germany
t ichyoira . uka . de

Program and abstracts

Monday, 20. May 1991
Morning session
<> Helmut Emmelmann � �CODE SELECTION BY REGULAR CONTROLLED
TERM REWRITING� T

In my presentation I will introduce a new method to evaluate systems of term
rewriting rules or term equations. It is called regular controlled term rewriting. The
basic idea is to control the rule applications by using a regular tree automaton.

Using those systems makes it possible to describe code selectors by very high level
speci�cations: The mapping from the intermediate code to the target code can be
described by term rewriting rules or by equations in a compact way. A tree grammar
with associated cost values is used to specify the set of target terms and their costs.
Code selection is now the problem of rewriting a given intermediate code term into a
target term of minimal cost. The description method, as far as only code selection is
concerned, is similar to the work of R. Giegerich [Gie90a, Gie90b]. He uses an order
sorted type system to specify the set of target terms, which is quite similar to the tree
grammars we use. Because of the bigger class of term rewriting systems we can process
our descriptions can be more compact and elegant. However in contrast to Giegerich
we have not considered register allocation yet.

Our generation algorithm takes a description and produces a tree transducer which
constructs for each input term a cost minimal target term. This tree transducer can
be implemented very efficiently. We can handle a large class of term rewriting systems.
For example it is possible to write equations which we consider as two rewriting rules
one in each direction or even rules with only a variable on the left hand side. The
term rewriting systems need to be neither con�uent nor terminating. Similar to the
approach in [EPL88] the transformation process is required to proceed bottom up with
finite exceptions. However our method can also process term rewriting systems which
do not obey the BURS-condition.

The paper consists of three parts. First it will be shown how code selectors can be
speci�ed using our method. The main part of the paper describes the algorithm which
generates the tree transducer. Finally we will present experiences with a first prototype
implementing our method.

<> Christian Ferdinand � �TREEPARSING - EXPERIENCES MADE IN
SAARBRUCKEN�

The codegenerator tool developed at the Universitaet des Saarlandes has� as input
an annotated regular tree grammar (also called �machine grammar�), whose rules de-
scribe the effects (of parts) of the machine instructions as terms in an intermediate
representation. These rules are regarded as reduction rules. A reduction sequence
to a nonterminal of an expression given as a tree in the intermediate representation
(equivalently a derivation of the tree according to the tree grammar) corresponds to
one possible instruction sequence. A tree parser for the �machine grammars� is used

8

to examine all possible derivations and the cost annotations are used to determine a
sequence with minimal costs.

The codegenerator tool was planned as an extension to the OPTRAN system. OP-
TRAN is a system to support transformations of attributed trees. The syntactic part
of the application condition of a transformation is specified by a �tree pattern� in the
sense of [HO82l» For these patterns the OPTRAN system includes an incremental
pattern matcher generator, which generates bottom-up tree automata [M6n80]. These
automata are represented by sets of �horizontal tree automata� [KrO75], which can
usually be stored more space efliciently than a direct representation as matrices. 0

For a given �machine grammar�, the codegenerator tool �rst generates a pattern
matcher for the rules. The nonterminals are treated as terminal symbols. In a sec-
ond phase, this pattern matcher is transformed into a bottom-up parser for the tree
grammar by �simulating� derivation steps (or equivalently reduction steps) [WW88].
The representation of the parsers as �horizontal tree automata� leads to acceptable
automate. sizes. Using table compression methods as described in [BMW88], the parser
can be stored very space efficient (e.g. approximately 7000 entries for a NSC32000).

<> Robert Giegerich ��- �CONSIDERATE CODE SELECTION�

Considerate Code Selection seperates analysis and program transformation used
in code generation from actual selection, i.e. making decisions between alternative
encodings of a program. In �the extreme, all alternatives are fully analysed and the
choice is made as the �nal step. Since the number of alternatives is exponential in the
size of the input program, a new form of sharing is required to make this approach
feasible.

Afternoon session

<> Jonathan Bowen -���- �FROM PROGRAMS TO OBJECT CODE AND BACK
AGAIN USING LOGIC PROGRAMMING�

A compiler may be speci�ed by a description of how each construct of the source
language is translated into a sequence Of Object code instructions. It is possible to
produce a compiler prototype almost directly from this speci�cation in the form of a
logic program. This de�nes a relation between allowed high�level and low-level program
constructs. Normally a high-level program is supplied as input to a compiler and object
code is returned. Because of the declarative nature Of a logic program, there is no reason
in theory why object code should not be supplied and the allowed high-level programs
returned, resulting in a decompiler. This paper discusses the problems of adopting such
an approach in practice. A simple compiler and decompiler are presented in full as an
example in the logic programming language Prolog, together with some sample output.
Finally, the possible bene�ts of using constraint logic programming are considered. It is
possible that the results presented could be developed to be of practical use for reverse
engineering in the software maintenance process.

<> C. W. Ke�ler, W. J. Paul and T. Rauber ��� �REGISTER ALLOCA-
TION AND CODE OPTIMIZATION FOR VECTOR BASIC BLOCKS ON VECTOR
PROCESSORS�

We present a randomized heuristic algorithm to generate continuous evaluations
for expression DAGs with nearly minimal register need; The heuristic may be used

9

to reorder the statements in a basic block before applying a global register allocation
scheme like graph coloring. Experiments have shown that the new heuristic produces
results about 30% better on the average than without reordering.

Basic blocks of vector instructions lead to vector DAGs. For the special class of
quasiscalar DAGS, the problem can be reduced to the scalar case handled above pro-
vided that some machine constraints such as buffer size and pipeline depth are taken
into consideration. Theorectical considerations show that there exists an interesting
tradeoff-effect between strip miningan vector register spilling. Therefore we give an
algorithm which computes the best ratio of spill rate to strip length with respect to the
run time on the target vector processor which is given by some architecture parameters.
This algorithm is suited for vector processors containing a buffer (register �le) which
may be partitioned arbitrarily by the user.

0 Petr Kroha � �CODE GENERATION FOR A SINGLE-INSTRUCTION MA-
CHINE�

Most contributions on this seminar describe sophisticated solutions of the code
selection problem. In my contribution I describe how to avoid this problem. The Single-
Instruction Computer (SIC) machine will be described which uses only one instruction
in the set of machine instructions, i.e. the operation code will be omitted. The only
operation is MOVE. The main processor (a Central Move Unit (CMU)) of the SIC
machine only moves operands to specialized one-operation-coprocessors (Arithmetic
Move Unit (AMU)). In this paper we discuss usage of AMU�s which have the execution
time larger than the MOVE operation has. This extension offers parallel programming of
such a machine. Considerable thought has been devoted to problems of code generation
with a particular regard to scheduling used in a compiler for such a machine.

Tuesday, 21. May 1991
Morning session
<> Michael Philippsen 8c Walter F. Tichy �� ��C0MPILING FOR MAS-
SIVELY PARALLEL MACHINES�

This article discusse techniques for compiling high-level, explicitly-parallel languages
for massively parallel machines.

We present mechanisms for translating asynchronous as well as synchronous par-
allelism for both SIMD and MIMD machines. We show how the parallelism speci�ed
in _a program is mapped onto the available processors and discuss an effective opti-
mization that eliminates redundant synchronization points. Approaches for improving
scheduling, load balancing, and co-location of data and processes are also presented.
We conclude with important architectural principles required of parallel computers to
support ef�cient, compiled programs.

Our discussion is based on the language Modula-2*, an extension of Modula-2 for
writing highly parallel programs in a machine-independent, problem-oriented way. The
novel attributes of Modula-2* are that programs are independent of the number of
processors, independent of whether memory is shared or distributed, and independent
of the control mode (SIMD or MIMD) of a parallel machine. Similar extensions could
easily be included in other languages.

10

<> Phil Hatcher �� �CCMPILING DATA_-PARALLEL PROGRAMS FOR MIMD
ARCHITECTURES�

We are convinced that the combination of data-parallel languages and MIMD hard-
ware can make an important contribution to high-speed computing. We describe a
compiler that translates a data-parallel variant of C to code suitable for execution
on hypercube multicomputers. Dataparallel C provides a model that includes virtual
processors, synchronous execution, and a global name-space. The hypercube compiler
must implement these features on distributed-memory machines whose processors are
running asynchronously. We present the results of evaluating the compiler using a suite
of benchmark programs.

<> Kathleen Knobe � �ISSUES IN GENERATING CODE FOR DISTRIBUTED
MEMORY ARCHITECTURES�

Compass has built a number of Fortran-90 compilers for single instruction stream
multiple data stream (SIMD) targets, including ones for Thinking Machines Corp.�s
Connection ,Machine, MasPar�s MP-l, and David Sarnoff Research Lab�S Princeton
Engine. In this context, we have developed some new compilation strategies for the
middle and back end to optimize various aspects of the resulting code. Since communi-
cation among processors in distributed memory systems is far more costly than compu-
tations within processors, these new strategies are largely directed at either creating or
exploiting locality within processors. Since most of these techniques are directed at op-
timizing for distributed memory and are not SIMD speci�c, we are currently extending
the results to MIMD targets.

Here we describe three new analyses. The �rst, called data optimization, is de-
signed to create locality of reference within processors. Data optimization analyzes the
usage of array sections in the source and determines the relative layout of arrays with
respect to each other in order to minimize interprocessor communication requirements.
This phase focuses on the source usage and ignores limitations imposed by the target
architecture. The second analysis, mapping, maps the arrays onto the �nite number
of processors in the target architecture, maintaining the relative alignments produced
by data optimization. Mapping may result in multiple elements of an array on each
processor. The third analysis, divide-into-regions, analyses the layout of each operand
in an expression tree and optimizes the strip loops to optimize register usage. Although
we also perform the standard strip loop optimizations, the issues addressed by division-
into-regions are speci�c to SIMD architectures and are not described elsewhere.

Afternoon session

0 A. Asthana, H. V. Jagadish, P. Krzyzanowski � �THE DESIGN OF
A BACK-END OBJECT MANAGEMENT SYSTEM�

We describe the architecture and design of a back-end object manager, designed
as an �active memory� system on a plug- in board for a standard workstation (or
personal computer). We show how, with minimal modi�cation to existing code, it
is possible to achieve signi�cant performance improvement for the execution of data-
intensive methods on objects, simply by using our back-end object manager.

11

<> Mario Wolczko �� �IssUEs IN CODE GENERATION FOR SMALLTALK-80
ON AN OBJECT-ORIENTED ARCHITECTURE�

The Mushroom Project at the University of Manchester has designed and is imple-
menting anovel architecture to support ob ject-oriented languages such as Smalltalk-80.
The architecture has been designed with current compiler technology in mind, so that
much of the burden of achieving good performance rests with the compiler.

This talk will outline the Mushroom architecture and compiler structure, and con-
centrate on issues peculiar to the architecture and source language which have a sig-
ni�cant impact on code generation. .

Some of these issues are:

o Dynamically bound procedure invocation
The predominant control structure used in Smalltalk-80 is based around message
sending (dynamically-bound procedure invocation). Apart from the overhead of
this mechanism, it presents a number of barriers to further optimisation. The
detection of cases which can be bound at compile time opens the door to signi�cant
performance gains.

0 Optimisation and efficient execution of Smalltalk blocks (similar to
Lambda-expressions in Scheme)
Such expressions are used extensively in Smalltalk for the construction of control
structures. The contexts (activation records) of all control structures are, in the
general case, available as �rst-class heap-allocated, garbage-collected objects. Sig-
ni�cant performance gains are to be had by detecting special cases which do not
require the creation of full objects.

0 Interactive use

The �nal compiler must still preserve the interactive nature of the system (each
compilation must not take more than a few seconds, and should usually be under
a second), and respect the demands of the source-level debugger.

0 Register allocation and instruction scheduling
Because basic blocks are on the average very short (due to the frequent use of
message sends), it is important to squeeze the most out of every cycle by avoid
pipeline bottlenecks and collisions, and �lling delayed branch slots as much as
possible.

0 Josh Fisher � �INSTRUCTION-LEVEL PARALLELISM & SPECULATIVE
EXECUTION�

This talk addresses compiling methods for instruction-level parallel processors, such
as superscalars and VLIWs, with particular emphasis on techniques for speculative
execution.

An operation is speculative when it is executed ahead of a conditional jump that
might have prevented its execution. Although researchers have had difficulty accepting
this conclusion, experiments done over the past 20 years have consistently shown the
same thing:

0 There is a lot of instruction-level parallelism available in most types of real pro-
grams (anywhere from a potential speedup factor of 5 to speedups limited only by
the size of the data).

12

o If you don�t do a lot of speculative execution, you can only get a little of it (perhaps
a factor of 2-3).

Trying to do a lot of speculative execution led 13 years ago to a compiler technique
called �trace scheduling�. Trace scheduling considers very large windows, sometimes
containing thousands of operations. The alternative, considering blocks of straight line
code, leads to the binding all of the nonspeculative operations �rst, and the generation
of very poor code.

Trace scheduling�s windows are linear execution paths through the code, but ob':i-
ously one can�t consider all paths. Instead, trace scheduling compromises by passing
conditional jumps only in the statically predicted more likely direction. This compro-
mise works well for codes with highly predictable control �ow, including many impor-
tant numeric applications. But recent hard evidence has veri�ed the intuitive feeling
that this throws out toomuch opportunity in many general-purpose codes. In this talk,
I will brie�y review trace scheduling and the recent experimental data which leads one
to want to extend it. I will then survey techniques which extend trace scheduling
to more general code by considering operations from both sides of conditional jumps.
Some of these techniques date from the original formulation of trace scheduling and
soon thereafter, while others are new. Finally, I will touch on the interesting systems
effects of trying to do hundreds of operations you aren�t necessarily supposed to have
done.

Discussion on �Parallelism�

Led by Walter F. Ticby with the aid of a few prepared slides
Summarized by Michael Pbilippsen

Parallel l\Iacihine Architecture and Parallel Programming

Today �s sequential processors are I101; designed in a vacuum �e Instead, they are built to
ful�ll the needs of extensiw; zets of benchmark programs and at the same time take a
into account the capabilities of compilers. A comparable level of maturity has not been
reached in the design of parallel computers. The semantix; gap between parallel hard-
ware and high-level, parallel languages is substantial at PIC� ent, and far too large to be
bridged effectively by a compiler. The result is that programmers must code at a low,
machine-oriented level and that parallel programs are largely non-portable. This poor
state of affairs is not surprising, given that many of the variables involved in parallel
system design are unknown and in a state of �ux. These variables include the capa-
bilities that parallel machines can offer, the translation and optimization techniques of
compilers for parallel machines, and the appropriate high-level constructs in parallel
programming languages. In addition, parallel system architecture allows many more
degrees of freedom than sequential systems. In the long run, however, the practice of
rewriting parallel programs for every new machine architecture is economically intoler-
able. A major challenge is hence the harmonization of parallel machine architectures,
compilers, and programming languages, with the goal of allowing programs to be writ-
ten in high-level, problem-oriented languages, while developing compilers that translate
the programs into efficient target code for a wide variety of parallel architectures. Suc-
cess will be measured by how well real, machine-independent application programs will

13

execute on real, parallel computers. Since highly parallel machines with thousands and
tens of thousands of processors are already being manufactured and used commercially,
this challenge requires a solution urgently.

imperative functional logic

Programming Languages

Compilers

Parallel Architectures

SIMD MIMD Dataflow

shared memory distributed memory

CM MasPar nCUBE Intel DAP

Figure 1: Interaction between Languages, Compilers, Architectures

The purpose of the discussion was to approach this challenge from the language and
compiler designer�s viewpoint. The questions put to the audience were as follows:

0 What are the needs of the programmers?

o What features of parallel computers are germane and must be re�ected in the
programming languages?

o What features of parallel computers are accidental or irrelevant for machine-
independent programs?

o What are the major questions faced by compiler writers?

o What properties should parallel hardware possess to allow for efficient, compiled
programs?

A view shared by many in the audience was that the approach of automatically
parallelizing existing, sequential code should not be followed intensively. Although
there is overwhelming economic justi�cation for this approach, it will meet with only
limited success in the short to medium term. The goal of automatically producing
parallel programs can only, if ever, be achieved by program transformation systems
that start with problem speci�cations and not with sequential implementations. In
a sequential program, too many opportunities for parallelism have been hidden or
eliminated.

A long term goal could be to develop interactive program transformation systems
that assist programmers in parallelizing programs and provide feedback and guidance.
The problem with this idea is that the approach of semi-automatic program trans-
formations is still an object of active research, even for sequential programs. In the
medium term, a production-quality transformer for deriving realistic, parallel programs

14

is unlikely to appear. The traditional method of teaching algorithms and formulating
them in programming languages with explicit parallelism is likely to be more successful,
especially since the body of known parallel algorithms is large and growing rapidly. Ini-
tial indications seem to be that writing parallel software is not signi�cantly harder than
writing sequential software, provided the languages and support tools are adequate.

Concerns of the Programmer

The following is a general list of requirements on programming languages and support
tools. The requirements are not new; they are borrowed from the world of sequential
programs, but apply equally well to parallel programs.

o The programming language should permit clear expression of algorithms and sys-
tems architecture, to ease the writing, reading, veri�cation, understanding, mod-
ification, and reuse of software systems.

0 Programs should be portable to a wide range of hardware architectures.

o Programs should run (after compilation) with satisfactory efficiency and with ef-
fective utilization of the available hardware resources.

o Support tools for debugging, testing, and measuring of parallel programs should
be available.

Current practice is quite different: Existing parallel programming languages do not
allow clear expression of algorithms, parallel programs are not portable, and support
tools are often poor. The goal of satisfactory efficiency can often be met only by writing
low-level, machine-dependent code.

But what are properties of parallel architectures that should be visible in parallel
programs? Should the number of processors be visible? Is it necessary for the program-
mer to know about the organization of memory or the layout of the data? Are explicit
communication protocols necessary, or will the compiler be able to insert them into
the generated code by analyzing the data usage patterns? Should the control mode
be visible, i.e., should there be different programming languages specialized for SIMD,
MIMD, Data�ow or systolic computers?

PRAM. The PRAM is clearly the best studied approach to parallel programming
today. Most algorithms are formulated for the PRAM model. The shared memory of
this model makes programs much easier to understand than for models with distributed
memory and explicit message passing.

During the discussion we could not agree on the performance losses involved in
mapping the abstract PRAM model onto a real machine. If this mapping is possible
without adding asymptotic complexity, the PRAM is likely to be broadly accepted.
But this will be difficult to achieve, since the PRAM completely ignores the memory
hierarchies of today�s machines.

Due to the lack of high-level "parallel languages, an adequate approach to parallel
programming is still to develop a PRAM algorithm �rst and then to translate it (by
hand or compiler) to �t the target machine. �

Modula-2*. One approach to the above questions is Modula-2*, which is presented
in a separate article in this volume. Modula-2*, an extension of Modula-2, is problem-
oriented in the sense that the programmer can choose and mix the degree of parallelism,
i.e., the number of processors, and the control mode (SIMD-like or MIMD-like), as
needed by the intended algorithm. An interconnection network is not directly visible

15

in the language. A shared address space among all processors is assumed, though
not the necessarily shared memory. There are no explicit message passing instructions;
instead, reading and writing locations in shared address space subsume message passing.
Special data allocation constructs help control the access times in distributed memory.

On the features of parallel machines that should be visible in programming lan-
guages we noted the following. The number of processors needs to be available (as a
constant or variable), since algorithms that adapt to the number of processors often
perform superior compared to those that don�t. However, there are many algorithms for
which simple, system-provided multiplexing of processors (�processor virtualization�)
is sufficient. In those cases, programmers should not be forced to program virtualization
explicitly.

We do not think that programmers should be forced to specify much detail concern-
ing data layout and network structure, since both of these tend to be major sources
of machine dependence. Instead, we should develop tools that automatically or semi-
automatically embed the data and access patterns into given hardware structures. Ex-
plicit message passing should also be avoided in high-level programming languages,
because it is tedious and error-prone to program massively parallel message passing,
and also because message passing instructions are intimately tied to the way a problem
has been mapped onto a given architecture. Thus, message passing tends to cause
machine dependence that is dif�cult to remove and scale. '

Whereas in Modula-2* the organization of the memory is invisible, Knobe spoke out
in defense of the visibility of local address spaces. If locality is present at the language
level, it simpli�es dependence analysis and enhances the efficiency of the generated
code.

Recommendations for Parallel Architectures

The last part of the discussion centered on recommendations for parallel hardware. The
starting point was a list of recommendations which were collected during the work on
the compiler for Modula-2* by Philippsen and Tichy.

0 Hardware support for fast process creation, synchronization, and context switch-
ing.

0 Shared address space.� All processors should be able to generate addresses for
the entire memory on the system. Even the front-end�s memory should be part of
that address space. i

For pointers, system wide addresses are important, because otherwise they would
have to be simulated quite inefficiently in software.

0 Uniform memory access instructions. Most parallel machines today provide a set
of instructions for accessing local memory, a second one for accessing memory in
neighbors, and a third set for accessing distant memory units. The differences
in speed are signi�cant and therefore require that the compiler detects the faster
cases. However, it is often impossible to know statically for which case to optimize.
For instance, we found that in many cases it was impossible to determine in
the compiler whether a procedure would access local or non-local memory. The
generated code thus has to check all three cases at run-time. Such a simple and
frequently repeated case analysis could be done much more efficiently in hardware.

�A shared address space does not imply shared memory.

16

o Simulating shared memory. A shared memory in which a.ll memory units can
be accessed in the same time would simplify programming and optimizing com-
pilers greatly. Latency hiding and randomization technics could help achieve a
reasonable approximation of true shared memory. Latency hiding means that
each processor can initiate several memory references before receiving a response.
Thus, the network serves each processor�s request in a pipelined fashion. The
total network bandwidth of the network must be high enough to accept and serve
memory accesses for all processors at rate that is comparable with accesses to local
memory.

o Autonomous addressing capability. An autonomous addressing capability means
that each processor can generate its own addresses for accessing memory. The
Connection Machine, for example, does not have such a facility - each processor
must use the sa.me address into its own, local memory for each parallel instruction.
The lack of autonomous addressing not only makes many applications awkward
to write, especially if they use pointers, but also precludes certain optimizations
in processor virtualization.

0 Single instruction set. SIMD machines today typically have different instruction
sets for front-end and parallel processors. This property implies that the code
generator of the compiler has to be written twice. Also, each procedure has to be
translated twice, doubling code size. A single instruction set would simplify this
aspect.

0 Small instruction set. The Connection Machine, for example, offers about 400
instructions. As in sequential compilers, only a few dozens of these instructions can
actually be generated. Clearly, a detailed study determining the most frequently
used instructions in parallel programs is desperately needed.

Wednesday, 22. May 1991
Morning session
<> David G. Bradlee -� �RETARGETABLE INSTRUCTION SCHEDULING FOR
PIPELINED PROCESSORS�

. Retargetable code generators developed in the last decade have focused on instruc-
tion selection for complex instruction set computers (CISCs). These code generators
could ignore instruction scheduling and, in many cases, did not perform global register
allocation. For reduced instruction set computers (RISCs), however, the compiler�s
emphasis must be shifted to instruction scheduling. In addition, register allocation is
at least, if not more, important for RISCs, because they typically have more registers
and all computation requires registers.

Retargetability remains important for RISCs, but the retargetability issues are dif-
ferent than for CISCs. First, the machine speci�cation must capture most schedul-
ing information. Second, the interaction between register allocation and instruction
scheduling is significant, because the scheduler needs registers to enable operations to
be overlapped.

My study of retargetable instruction scheduling for RISCs comprises three com-
ponents: the design and implementation of the Marion Code Generator Construction
System; the creation and analysis of code generation strategies; and the investigation
of the interaction between strategies and architectural features.

17

Marion contains a code generator generator that inputs a machine description and
outputs target-dependent data. The machine description contains most of the infor-
mation necessary to produce efficient code for RISCs, including instruction scheduling
requirements. Code generators have been built for the MIPS R2000, Motorola 88000
and Intel i860, along with� a number of variations on these architectures.

The code generation strategy refers to the invocation order of and level of com-
munication between instruction scheduling and register allocation. I examine three
strategies, including one I developed, RASE, that integrates instruction scheduling and
register allocation. On a computation-intensive workload for three RISCs, RASE pro-
duces signi�cantly better code than the Postpass strategy, which does not integrate the
two phases, and slightly better code than the other strategy, IPS, which integrates the
two phases to a lesser degree than RASE.

In the investigation of the interaction between strategies and architecture, I vary
architectural features, including register set size and structure and operation and load
latencies, and examine the effect across the three code generation strategies. On a
computation-intensive workload, 64 registers yields a signi�cant improvement over 32
for Postpass, but very little improvement for IPS or RASE.

0 John C. Ruttenberg & Stefan M. Freudenberger �-� �PHASE OR-
DERING OF REGISTER ALLOCATION AND INSTRUCTION SCHEDULING�

Register allocation and instruction scheduling are often separated due to the com-
plexity of each. But if register allocation is performed before scheduling, it may intro-
duce arti�cial data precedence, keeping the instruction scheduler from doing its best
job. On the other hand, waiting until after scheduling to perform register allocation
may produce impossible schedules. In this paper we present a uni�ed approach to
instruction scheduling and global (beyond basic blocks) register allocation.

We assume that we compile for a RISC machine with exposed pipelines and a large
amount of instruction set parallelism that must be statically speci�ed. Instruction
scheduling is required in order to exploit any part of the performance potential of this
machine; without it, performance would be very uncompetetive. We also assume that
registers are often the most critical instruction scheduling resource; therefore we believe
that we must delay register binding decisions until scheduling time in order to give the
instruction scheduler the greatest possible freedom in picking registers.

This technique has been used in Multi�ow�s Trace Scheduling compilers, i.e., a
commercial quality implementation of these ideas has been done that shows that this
approach is both viable and effective.

<> Francois Bodin, William J alby, Christine Eisenbeis, Daniel Wind-
heiser � �WINDOW-BASED REGISTER ALLOCATION�

In this paper, we consider register allocation optimization problem for loop array
references as a particular case of memory'hierarchy management optimization. This
permits us to exploit techniques for data locality estimation and improvement usu-
ally done in the framework of cache or local memories management. First we recall the
concept of a �reference window� that serves as a good tool for both data locality evalua-
tion and management. We present a register allocation procedure based on the window
concept which we show to be usable in a compiler system. Estimations of expected

18

speedups are done. Then we study how loop restructuring techniques (interchang-
ing and tiling) can help improve data locality. Experimental speedup measurements
validating the interest of the approach are given for two RISC processors.

Afternoon session

<> Preston Briggs 8L Keith D. Cooper & Linda Torczon � �AGGRES-
SIVE LIVE RANGE SPLITTING�

The importance of register allocation was recognized when building the first op-
timizing compiler. Since that time, high-quality register allocation has remained an
important consideration in the design of optimizing compilers. Currently, graph color-
ing allocators dominate the �eld.

Fabri and Chow have independently observed that splitting a single live range into
several pieces and considering the new, smaller live ranges separately can produce an
interference graph with lower chromaticity. Chow and Hennessy used this idea, called
live range splitting, as the basis for a new allocator that avoided spilling when splitting
was possible.

Live range splitting has several merits. If an entire live range is spilled, as in
Chaitin�s work, its value will reside in a register only for short periods around each
de�nition and use. Splitting allows the value to stay in a register over longer intervals
� often an entire block or over several blocks. With luck, the new live range will be
large enough to extend over a complete loop.

Unfortunately, live range splitting is difficult. There are two fundamental problems:
picking live ranges to split and picking places to split them. While optimal solution of
either problem is surely NP-hard, we have developed a collection of heuristic techniques
that extend Chaitin�s allocator and cooperate to address both problems.

Aggressive live range splitting Observing that split points often become spill
points, we de�ne split points on edges entering and exiting loops with high register
pressure. To avoid choosing live ranges to split, we split all live ranges at each
split point.

Conservative coalescing If we allowed coalescing to run as usual, all effects of split-
ting would be removed. Instead, we use a limited form of coalescing to remove
excess splitting where the colorability will not be adversely affected.

Biased coloring Conservative coalescing is unable to remove all excess splits without
expensive examinations of the graph. However, we can achieve further coalescing
during color selection by biasing the color spectrum for each node to favor colors
that eliminate splits.

We have implemented these techniques in an experimental allocator and the early
results are promising; however, a fair amount af additional work remains.

19

Thursday, 23. May 1991
Morning session
0 David Wall ��� �EXPERIENCE WITH A SOFTWARE ARCHITECTURE�

Inconvenient or technology-dependent features of a processor can be hidden by sur-
rounding the actual hardware with a higher-level architecture implemented in software.
This high-level �software architecture� can be used as the target of all high-level com-
pilers and as the official assembly language for a machine or family of machines. The
implementation of the software architecture controls every bit of low-level code pro-
duced. This lets it perform very global optimizations that would be impractical or
unsafe in a more traditional compiler. Moreover, the software architecture can provide
instrumentation services that are more �exible than those provided by hardware ar-
chitectures-. The Mahler software architecture for WRL�s Titan family has provided a
framework for exploring these possibilities. Within it, we have implemented an inter-
module register allocator, a pipeline instruction scheduler, and a variety of high-level
and low-level performance analysis tools.

<> Annie Despland & Monique Mazaud � �PAGODE: AUTOMA1
DERIVATION OF BACK ENDS WITH PEEPHOLE OPTIMIZERS�

PAGODE is a code generator generator, based on tree rewritings. The IR to be
input to the code generator is a term of- an abstract data type such that the elementary
instructions act on cells via operators denoting access path to cells. The target machine
speci�cation is hierarchically organized into concepts corresponding to the main features
of the instruction set of the processor : locations, addressing modes, instructions. The
semantics of each concept is speci�ed by a template which is a term of the same abstract
data type.

The instruction selection step applies a set of rewriting rules to the IR term. These
rules are driven by tree templates derived from the target machine speci�cation

Basically, each instruction of the IR is matched with an instruction template. In
the context of such an instruction template, the operands are matched with addressing
modes templates. If an operand does not match any addressing mode template and a
subterm does, then the location designated by this subterm is stored in a temporary
location using a universal store. The IR is rewritten using this temporary location.

The concepts of temporary location and universal store enable to separate clearly
the register allocation phase from the instruction selection one. Furthermore, this
allows to make a clear cut between the choice of an actual storage for a temporary and
the choice of its name.

The result of the instruction selection step is a sequence of instances of instruction
templates. Such a sequence uses resources which are either actual resources or tempo-
rary resources of a universal type of storage. It is necessary to bind such temporary
with a set of valid actual storage types.

The register assignment is performed by graph coloring taking advantage of the
results of the binding step.

Peephole optimization rules can also be applied. They are produced by the instan-
tiation of generic rules using the target machine speci�cation and some computations
on the semantics of instructions.

20

<> Ralph E. Johnson 8c Carl Mc Connell 8L J. Michael Lake � �THE
RTL SYSTEM: A FRAMEWORK FOR CODE OPTIMIZATION�

The construction of compiler front-ends is understood well enough for a great deal
of the work to be automated. This paper describes type RTL System, which helps
construct the rest of the compiler � the optimizer � by providing a �exible set of
classes with a large number of prede�ned algorithms that the compiler writer can
customize. It also includes a traditional table-driven code generator and peep-hole
optimizer. The RTL System differs from systems to construct compiler front- and
back-ends because it does not specify the optimizations with a specialized language,
but is instead an object-oriented framework. This paper describes the framework and
how it can be used to build a code optimizer.

<> Mahadevan Ganapathi � ��PRoLoG BASED COMPILER BACK-END
GENERATION�

Prolog is used as a back-end language for the speci�cation and implementation of
optimizing code generators. It is used to reformulate pattern-matching code generators
and implement retargetable compiler back-ends. A comprehensive set of optimizations
is integrated into this framework and uniformly applied to produce high quality code.
The more precise the optimization rules are, the better is the discrimination.

Afternoon session

<> David. Wall � �SYSTEMS FOR LATE CODE MODIFICATION�

Modi�cation of code after it has been generated is useful for a variety of applications
including some kinds of late optimization and many kinds of high-level and low-level
instrumentation and simulation. Two systems that have been developed for doing this
are the code modi�cation part of my Mahler system and the �pixie� tool developed
independently at Mips.

The Mahler code modi�er is part of the linker, and modi�es object modules as they
are being linked. This has several advantages. An object �le contains a relocation
dictionary and loader symbol table, so Mahler can recognize address references and can
correct them to re�ect the changes made. The symbol table also provides a channel
for additional information that the compiler can include to explain tricky things in the
compiled code.

Mahler has the added advantage that the Mahler compiler produces all of the object
modules: it serves both as the back end of all high-level compilers and also as the only
available assembler. This means that any coding conventions followed by the Mahler
compiler are guaranteed to hold throughout the entire program.

Mahler has the disadvantage that the linker is nonstandard. Moreover, a user who
requests a particular application must re-link the program, and so must know what
object modules and libraries make up the program.

The pixie system works differently. Pixie modi�es an executable �le that has al-
ready been fully linked. The relocation dictionaries are gone, and the loader symbol
table may be gone as well. This means that a user can invoke pixie on an executable
without knowing or caring how it was built. However, it also means that pixie must
be conservative in many ways: for instance, each indirect jump in the original code
is replaced by a sequence of instructions that jumps via a huge address translation

21

table incorporated into the modi�ed executable. This kind of overhead makes pixie an
unsuitable medium for modi�cations that optimize, though it is still very convenient
for modi�cations that instrument.

I am exploring two intermediate points between Mahler and pixie.
The �rst is �dixie�, which acts on an executable as pixie does, but assumes that

it was generated using the Mips compiler conventions. Most executables include some
assembly code from libraries, which might not follow these conventions, so dixie looks
for library routines that it knows violate the conventions but that it can understand
anyway. In many cases this allows dixie to modify a program without needing the big
jump table, though programs that contain unexpected indirect procedure calls must
still include the table.

The second is �epoxie�� which assumes that the program has been completely linked
using an incremental linker that leaves the relocation dictionaries in place. (Unix
linkers normally have an option that does this.) This gives waxie some of Mahler�s
advantages without requiring modi�cations to the standard linker. A jump table is
never required, and the code modi�cation process can (I hope) be unintrusive enough
to use for optimization as well as for instrumentation.

<> Susan Graham �� �PATTERNS, TRANSFORMATIONS AND ATTRIBUTES�

As part of our research on dynamic compilation, John Boyland and I draw on some
results of Charles Farnum from his December 1990 Ph. D. dissertation, titled �Pattern-
Based Languages for Prototyping of Compiler Optimizers�. The pattern language, used
for rewrite systems �compiled� into bottom up regular tree automata, is an extension of
the usual tree pattern languages. The additions include typed wildcards (where types
are sets of regular tree patterns), horizontal iterations to support operations of varying
,arity, and vertical iterations to handle repetitive constructs such as left-associative
addition trees. An attribute system is organized around the enriched pattern matching
system to support factoring of the description by attributes rather than by abstract
syntax rules.

0 John Boyland 8: Susan L. Graham � �CODE GENERATION FOR
DYNAMIC COMPILERS�

The design of dynamic compilers, that is, compilers that preserve execution state
when newly compiled code is patched into an executing image, presents the compiler
writer with a number of difficulties. First, all the complexity of a standard compiler
is present. Second, enough intermediate information must be maintained to allow the
compilation to proceed incrementally. Third, the incremental incorporation of newly
compiled segments of code must disturb the existing execution state as little as possible.
All of these factors are compounded when the desired level of granularity is small,
such as at the level of statements or expressions. We describe our proposed method
for automatically generating dynamic compilers and explain how the method handles
these issues.

22

<> Robert R. Henry � �SMALL, FAST AND OPTIMAL INSTRUCTION SE-
LECTORS AND SOME SOANDALOUS POTENTIAL APPLICATIONS�

Bottom-up tree pattern matchers based on BURS theory are becoming the method
of choice for instruction selection. Although building the tables from a tree grammar is
both complex and expensive, the �nal tables are consumed by a simple and intuitively
appealing interpreter invoked when traversing the tree. By folding the interpreter into
the tables and carefully choosing between tables and specialized hand code, BURS
tables can be encoded into a small amount of space and be used to drive a very fast
pattern matcher and selector. Typical sizes are 40kBytes with a ratio of 300 instructions
executed to instructions generated.

This fast code generator let us contemplate generating object code for immediate
use. Self modi�ng code, for appropriate definitions of �self� and �modify� can now be
contemplated, abstracted and efficiently implemented.

<> Christopher W. Fraser � �SPECIFYING CODE GENERATORS�

This talk will describe experience with three different code generator generators
and their speci�cation languages. The �rst system was based on a peephole optimizer
driven by a formal description of the target machine. This approach was adapted for
use in the Gnu C compiler, so its practicality has been proven. More recent work shows
that the speci�cations can be particularly succinct.

The second system is based on a language for concise expression of hand-written
peephole optimizations. Speci�cations take 100-200 lines and compile into a fast, mono-
lithic program that accepts dags annotated with intermediate code, and generates, op-
timizes, and emits code for the target machine. These code generators are used in
lcc, a compiler for ANSI C on the VAX, Motorola 68020, SPARC, and MIPS R3000.
Its local code is comparable with that from other generally available C compilers, but
the compiler is much smaller and faster. lcc has seen production use at Princeton
University and AT&T Bell Laboratories for over two years.

The third system uses BURS theory, in one of its early applications in a produc-
tion compiler. The system is under development, but early experience has exposed
unexpected challenges. For example, in at least one case, it has been necessary to
encode hand-written peephole optimizations as BURS grammar rules; shorter, clearer
encodings are available. At least one full code generator should be complete before the
conference. The talk will describe the engineering required to use BURS theory in a
production compiler.

The approaches have different strengths: for example, the �rst accepts specifications
that are the closest to a pure description of the machine, the second is the most �exible,
and the third is the most attractive from a formal viewpoint. The talk will present
the pros and cons of the competing approaches, discuss the prospects for reducing
the trade-offs between them, and argue for generating all code generators from �pure�
machine descriptions.

23

Discussion on �Code Generator Speci�cation Techniques�

Led by Chris Fraser
Summarized by John Boyland and Helmut Emmelmann

Major participants:
John Boyland, Helmut Emmelmann, Robert Giegerich, Susan Graham,
Robert Henry, Uwe Kastens, Bill Waite, David Wall

Code generator speci�cations
The discussion started with some more questions on Chris Fraser�s talk: Robert
Giegerich suggested specifying code selection using a description (in the spirit of the
system proposed by Helmut Emmehnann in his presentation) to separate rules about
the machine description from code transformation rules. A code generator description

V would perhaps be split into the following parts:

o machine description

o IL description

o term rewriting rules

o optimizations

Chris Fraser felt that this may lead to overly verbose descriptions, and in particular,
the IL description should not be part of code generator description. It was agreed that
this topic is still research.

Chris Fraser continued the discussion by asking for suggestions for a common BURS
tool. He mentioned that several research groups had already started to develop their
own. In order to reduce redundant work, it would therefore be desirable to have one
freely available BURS tool. Chris Fraser could develop such a tool, but then AT&T
would own it. Robert Henry has a BURS tool (altogether about 25000 lines of code)
but no time to adapt it for general distribution. However it is not time critical to finish
the common BURS tool, because for experiments and for debugging of speci�cations, a
implementation based on the Aho/ Johnson dynamic programming algorithm (DP) can
be used. Only for a production compiler would the BURS tool be necessary to make
it run fast. Even with the BURS tool available, it would be desirable to continue to
distribute the DP tool for debugging purposes.

Discussion then centered on de�ning a standard input format and in particular on
the method forspecifying actions and costs for each BURS rule, so that development
of BURS code generators can go forward. Bill Waite observed that BURS technology
could be useful for applications other than code generation, for example, operator
identification; and thus the input format, and in particular the action clause, should
not be code generation speci�c. Uwe Kastens raised the issue of specifying other types
of costs, such as pipeline costs, but Susan Graham remarked that BURS can only
handle integer cost values which combine additively; otherwise compile time dynamic
programming becomes necessary. Rather than preclude other applications, therefore,
and in order to avoid handling notational convenience (as discussed below), the group
agreed on a simple low-level input format with integer costs and integer action numbers.
Compiler writers would then be free to develop extended BURS (EBURS) processors
that would use the low-level BURS tool to do the sophisticated work and that would
implement a customized version of the input language. There was no discussion on a
standard output format for the low-level BURS translator.

24

Extending BURS

After a short break, Chris Fraser raised the following issues he had noticed when he
was writing BURS speci�crintions:

1. how could factoring be handled in an extended BURS (EBURS) ?

2. how could DAGs be handled ?

3. how could scheduling be handled ?

4 . how should one split code generator speci�cations into a machine description and
rewrite rules ?

Factoring of BURS descriptions

Chris Fraser asked how factoring could be expressed in a EBURS-language. The fol-
lowing example of problem (which is part of the Chris Fraser�s Vax description) shows
that factoring (here, factoring on binary operators) is desirable:

expd: (BIN,D,xd,xd)

Factoring should also simplify certain recurring patterns, here demonstrated with
the assignment operator:

stmt: (ASGN,D,inx8,expd)
stmt: (ASGN,F,inx4,expf)
stmt: (ASGN,I,inx4,expl)
stmt: (ASGN,S,inx2,expw)
stmt: (ASGN,C,inx1,expb)

similarly for ARG, LOAD, �3� (in the place of ASGN)

The Vax description became about 40% shorter with factoring using ad-hoc regular-
expression-like patterns. Robert Henry proposed using some textual macroprocessing
mechanism. Chris Fraser said he would prefer something more powerful and cleaner, but
will use macroprocessing if nothing else is found. Bill Waite asked if it would be enough
that the system allow the programmer to specify the correspondences D / inx8/ expd,
F /inx4/expf, etc., to be used in rules for ASGN, ARG and LOAD. No agreement on a
standard factoring method was reached.

Application of BURS to intermediate code in. DAG form
The problem faced here was code generation for a DAG where shared nodes represent
common subexpressions. One does not always want to allocate a register for common
subexpressions: even_ignoring the issues of register pressure, the code may end up
longer! For example on the VAX, most addressing modes provide free computation of
register + constant and immediate data (32 bits); these free quantities should not be
assigned to registers. Other machines have different free operands: on MIPS, only 16
bit signed constants are free and only in certain situations (as right operands of ADD
etc).

The bottom-up phase of a BURS automaton works with DAGs. The code emitter,
working top-down, could count visits and for each node do one of the following things:

0 generate the code as normal BURS does

25

o evaluate the shared subtree into a register and remember the register assigned

o not produce code for the shared subtree, but instead reuse the value stored in a
register before

The second and third alternative however require that BURS has decided to place the
result of the subtree into a register.

Chris Fraser identified two problems when producing code for DAGs using a BURS
code selector:

o how to �nd out or how to specify which expressions are free (and should therefore
not be placed into a register)

0 how to force the code selector to put something into a register

For the �rst problem John Boyland proposed to just use the cost values in the
description, addressing modes would have zero costs. Robert Henryremarked that we
had to be careful: costs not always assigned in the right places in a description.

Then Bill Waite proposed to add new rules for free productions:

Before:
X : (freel)
X : (free2)
Y : use(X) (free)
Z : use(X) (costs)

After:
:(freel)
:(free2)

: Xf

: use(Xf) .
: use(X)

For the second problem, how to get copy into a register, Robert Henry proposed to
insert a copy to a register in the DAG on the bottom-up pass, if we notice we need to
put it in register. Bill Waite proposed to do it on the top-down pass (when we emit
code); if a subtree doesn�t have zero cost we calculate it into a register and then use the
register at the node. However David Wall remarked that this would not work because
a pattern may match over the DAG join.

Then Helmut Emmelmann proposed to add a DAG operator into the intermediate
language and to put in rules which force the subtree below the DAG operator to be
evaluated into a register. Robert Henryproposed the following rules for DAG:

reg: DAG(X) 1 +-� cost
Xf : DAG(Xf) 0

Finally the group came up with a better solution:

reg: DAG(reg) 0
Xf : DAG(Xf) 0

These two rules force everything below DAG into a register (�rst rule) unless it is free
(second rule). D

~<xaa

Problem 3 and 4 were not handled in the discussion, as they were considered still
research topics.

26

Friday, 24. May 1991
Morning session
<> Hugh Osborne ��- �UPDATE PLANs�

It is a truism that a programme is a function from machine state to machine state,
composed from the functions represented by individual machine �instructions�. How-
ever, specifying these instructions in a functional formalism is often unwieldy and fre-
quently far removed from potential concrete implementations. If a prototype implemen-
tation is produced using a functional language it is usually unnacceptably inefficient.

Other abstract machine speci�cation methods also have drawbacks. Transition sys-
tems quickly reach their limit of readability, writability and comprehensability as the
structure of machine con�gurations becomes complex. An imperative programming
style is often ad hoc and quite often contains (hidden) machine dependance. An in-
formal description is often incomplete and hard to implement. In recent years the
Bird-Meertens formalism has been gaining in popularity. Work on abstract machine
description in squiggol has been done, and has indeed led to new insights into classes
of abstract machines, but it is still a major step from a squiggol �programme� to a Von
Neumann implementation.

Update plans, proposed as a method for low level speci�cation, have now been de-
veloped into a high level language for specifying low level activities. They are amenable
to interpretation as speci�cations of machine state transitions while maintaining a great
deal of similarity to low level code, thus allowing for efficient hand compilation to, for
example, assembler.

A compiler for a subset of update plans is currently under development. The aim
is to produce a series of compilers, ranging from compilers producing innef�cient code
but providing a wide range of compile and "run time trace and debugging facilities, to
optimising compilers producing rapid prototypes. A preliminary compiler was tested on
a speci�cation of an abstract machine for a simple functional language. The resultant
code was of the same order of efficiency as the Miranda system (Miranda is a trademark
of Research Software Limited). A speci�cation of a more complex abstract machine,
for a logical functional language, using update plans is planned, which will then be
implemented. �

Update plans have also succesfully been used as a teaching aid in the undergraduate
compiler construction course at the University of Nijmegen, where they are used to
specify the implementation of an imperative language.

<> Veldhuijzen van Zanten -� �CODE GENERATION BASED oN A FORMAL
MACHINE MODEL�

We present a formal machine model and use this to derive a code-generation tech-
nique. In the -model, cells and values, which constitute the machine state, play a central
role. The machine state is modi�ed under control of a program that is a syntactic object
consisting of a sequence of assignments. Each assignment assigns a value expression to
a cell expression. A generic language is built around these concepts, so that we can
talk about them without having to resort to some speci�c target-machine architecture.
The denotational semantics of this generic language are described in the �rst part of
the paper. �Due to the precise formal nature of the machine model, we are able to give
a precise de�nition of the code-generation problem. This de�nition demands a code
generator to

27

o be correct,

o be complete, i.e. able to generate code for any program,

0 generate ef�cient code, and

o be ef�ciently implementable.

Using this de�nition, we derive a code-generation algorithm. As in other techniques,
instructions are modelled by templates that can be glued together in order to construct
a program. In traditional techniques, data-�ow dependencies are used to glue the
templates together. In our model, however, the glue models the control �ow. As a
consequence, we can handle instructions with multiple effects in a uniform way. The
data-�ow dependencies, however, impose more complex conditions on the rewriting
process. As template matching and an equivalent of register-transfer lists form the
basis of the algorithm, it can be seen as a middle road between template-matching
schemes as described by Giegerich and the Davidson and Fraser approach.

The algorithm is based on rewriting program terms using the following scheme.
A program p is examined in order to identify a useful instruction I so that there
exists a reduced program p� for which the composition of the effect 6(1) of I and p�
is semantically equivalent to p. The reduced program p� can be seen as an optimized
version of p, where the knowledge that I is already executed is exploited in order to
reduce the cost of the program.

To exploit the inherent freedom of choice in selecting instructions and in optimizing
the reduced program, we rewrite jungles instead of program terms. Jungles are data
structures that incorporate part of the data �ow in addition to the program structure.

0 Bettina Buth 8c Karl-Heinz Buth � �AN APPROACH TO AUTOMATIC
PROOF SUPPORT FOR CODE GENERATOR VERIFICATION�

In principle, program veri�cation is the only adequate means to ensure the cor-
rectness of software with respect to precise or formal speci�cations. But since realistic
programs and especially code generators and other parts of compilers tend to be large
and complex, some mechanical support is necessary for the veri�cation of these pro-
grams. In this paper we present the ideas of the veri�cation support system PAMELA
that is intended for the veri�cation of programs written in a subset of Meta IVthat are
speci�ed by pre- and postconditions. PAMELA organizes the proof for such programs
and is based on a special kind of term rewriting.

<> C.A.R.. Hoare, He J ifeng, Jonathan Bowen and Paritosh Pandya
� � AN ALGEBRAIC APPROACH TO VERIPIABLE COMPILING SPECIFICATION
AND PROTOTYPING OF THE PROCOS LEVEL 0 PROGRAMMING LANGUAGE
97

A Compiler is speci�ed by a description of how each construct of the source language
is translated into a sequence of object code instructions. The meaning of the object
code can be de�ned by an interpreter written in the source language itself. A proof
that the compiler is correct must show that interpretation of the object code is at least
good (for any relevant purpose) as the corresponding source program. The proof is
conducted using standard techniques of data re�nement. All the calculations are based
on algebraic laws governing the source language. The theorems are expressed in a form
close to a logic program, which may used as a compiler prototype, or a check on the

28

results of a particular compilation. A subset of the occam programming language
and the transputer instruction set are used to illustrate the approach. An advantage of
the method is that it is possible to add new programming constructs without affecting
existing development work.

Afternoon session

0 Robert Giegerich � �WHAT CAN WE EXPECT FROM FORMAL CODE
GENERATOR SPECIFICATION AND VERIFICATION TECHNIQUES?�

One to the growing concern for hardware and software reliability, mechanical assis-
tance in correctness proofs is required. We can distinguish two such approaches. The
first approach translates the design into some well-known logic, and uses an existing
theorem prover for validation. The second approach starts from problem oriented no-
tations and concepts, trying to formalize these to obtain a problem-speci�c validation
system. The talk sketches various aproaches of both kinds, tring to evaluate their rel-
ative strenghts and weaknesses. This is intended to spawn discussion on the viability
of the formal approaches.

References

[BMW88] Jürgen Biirstler, Ullrich Möncke, and Reinhard Wilhelm. Table compression for tree

[EPL88]

[Gie90a]

[Gie90b]

[H082]

[Kro75]

[Mön80]

[wwss]

automata. Technischer bericht, Universität des Saarlandes, 1988.

Susan Graham E. Pelegri-Llopart. Optimal code generation for expression trees: An
application of burs theory. In Proceedings of the 15th Symposium on Principles of
Programming Languages, pages 294-308, 1988.

Robert Giegerich. Code selection by inversion of order-sorted derivors. Theoretical
Computer Science, (73):177�211, 1990.

Robert Giegerich. On the structure of veri�able code generator speci�cations. In
Proceedings of the SICPLAN Conference on Programming Language Design and Im-
plementation, pages 1-8, 1990.

Hoffmann and O�Donnel. Pattern matching in trees. Journal of the Association for
Computing Machinery, 29(1):69�95, January 1982.

H. Kron. Tree templates and subtree transformational grammars. PhD thesis, Uni-
versity of California, 1975.

Ullrich Möncke. An incremental and decremental generator for tree analyser. Bericht
A80/ 3, Universität des Saarlandes, FB10, 1980.

Weisgerber and Wilhelm. Two tree pattern matchers for code selection. In Lecture
Notes in Computer Science, volume 371, pages_215�229, 1988.

29

Bisher erschienene und geplante Titel:

W. Gentzsch, W.J. Paul (editors):
Architecture and Performance, Dagstuhl-Seminar-Report; 1, 18.-20.6.1990; (9025)

K. Harbusch, W. Wahlster (editors):
Tree Adjoining Grammars, 1st. Intemational Worshop on TAGS: Formal Theory and Ap�
plication, Dagstuhl-Seminar-Report; 2, 15.-17.8.1990 (9033)

Ch. Hankin, R. Wilhelm (editors):
Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report: 3, 3.-
7.9.1990 (9036)

H. Alt, E. Welzl (editors):
Algorithmic Geometry, Dagstuhl-Seminar-Report; 4, 8.-12.10.1990 (9041)

J. Berstel , J �E. Pin, W. Thomas (editors):

Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar-Report;
5, l4.�18.l.199l (9103)

B. Becker, Ch. Meinel (editors):
Entwerfen, Prüfen, Testen, Dagstuhl-Serninar-Report; 6, 18.-22.2.1991 (9108)

J. P. Finance, S. Jähnichen, J. Loeckx, M. Wirsing (editors):
Logical Theory for Program Construction, Dagstuhl-Seminar�Report; 7, 2S.2.�1.3.l991
(9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar~Report; 8, 4.-8.3. 1991 (9110)

M. Broy, P. Deussen, E.-R. Olderog, W.P. de Roever (editors):
Concurrent Systems: Semantics, Speci�cation, and Synthesis, Dagstuhl-Seminar-Report;
9, 11.-15.3.1991 (9111)

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors):
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10, 18.-
22.3.1991 (9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; ll, l5-
19.4.1991 (9116)

B. Nebel, C. Peltason, K. v. Luck (editors):

Terrninological Logics, Dagstuhl-Seminar-Report; 12, 6.5.-18.5.1991 (9119)

R. Giegerich, S. Graham (editors):
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13, 20.-
24.5.l991 (9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-14.6.1991 (9124)

J. Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processing in Object-Oriented, Complex-Object and Nested Relation Databases,
Dagstuhl-Seminar-Report; 15, 17.-21.6.1991 (9125)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Report; 16,
24.-28.6.1991 (9126)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 17, 1.-5.7.1991 (9127)

A. Karshmer, J. Nehmer (editors):
Operating Systems of the 1990s, Dagstuhl-Seminar-Report; 18, 8.-12.7.1991 (9128)

H. Hagen, H. Müller, G.M. Nielson (editors): T
Scienti�c Visualization, Dagstuhl-Seminar-Report 19, 26.8.-30.8.91 (9135)

T. Lengauer, R. Möhring, B. Preas (editors):
Theory and Practice of Physical Design of VLSI Systems, Dagstuhl-Seminar-Report 20,
2.9.�6.9.91 (9136)

F. Bancilhon, P. Lockemann, D. Tsichritzis (editors):
Directions of Future Database Research, Dagstuhl-Seminar-Report 21, 9.9.�13.9.91

H. Alt, B. Chazelle, E. Welz (editors):
Computational Geometry, Dagstuhl-Seminar-Report 22, 07.10.-11.10.91 (9137)

F.J. Brandenburg , J. Berstel, D. Wotschke (editors):
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report
23,14.10.-18.10.91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J .-L. Lassez , G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report
24, 21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
Data Structures, Dagstuhl-Seminar-Report 25, 4.11.-8.11.91 (9145)

A. Borodin, A. Dress, M. Karpinski (editors):
Ef�cient Interpolation Algorithms, Dagstuhl-Seminar-Report 26, 2.-6. 12.91 (9149)

B. Buchberger, J . Davenport, F. Schwarz (editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Report 27, 16..-20.12.91 (9151)

