July 23 – 28 , 2023, Dagstuhl Seminar 23301

Computational Proteomics


Rebekah Gundry (University of Nebraska – Omaha, US)
Lennart Martens (Ghent University, BE)
Magnus Palmblad (Leiden University Medical Center, NL)

For support, please contact

Jutka Gasiorowski for administrative matters

Andreas Dolzmann for scientific matters


Novel algorithms have become driving forces of innovation in mass spectrometry (MS) based proteomics, as these computational advances have allowed much improved recovery of actionable information from acquired data, in turn propelling the field forward towards ever more sophisticated experimental approaches. Obviously, this also creates a highly fertile ground for interdisciplinary discussions and brainstorming on the evolution and future of computational proteomics.

We have therefore identified four highly interesting computational challenges (and thus opportunities) that have come to the foreground in the field of proteomics: (i) the quickly emerging and expanding application of Machine Learning throughout the field of proteomics; (ii) dedicated computational support for the newly emerging field of single-cell proteomics analyses; (iii) the identification and localization of protein glycosylation using mass spectrometry; and (iv) computational approaches to support the increasingly important role of proteomics in the discovery, design, and quality control of (novel) therapeutics.

Machine Learning is becoming pervasive across the field, which also means it cuts across the other topics, while the other three challenges represent specific application domains of proteomics (single-cell analysis, glycoprotein characterization, and therapeutics). However, between these application domains there are very interesting areas of overlap, such as analysis of therapeutic antibody glycosylation, and glycan analysis of the surfaces of single cells. This Dagstuhl Seminar on Computational Proteomics is therefore built around these four core challenges/opportunities.

As different experts need to be brought together to tackle these four topics, this seminar is thoroughly interdisciplinary: computer scientists, bioinformaticians and statisticians, who develop algorithms and software for data interpretation; experimental life scientists that rely on proteomics as a key means to elucidate biology; and analytical chemists and engineers that develop new instruments and approaches to deliver ever more comprehensive and accurate data. Throughout, industry plays crucial roles as instrument and software vendors, and as advanced users driving applications, including in the development of new diagnostics and pharmaceuticals. Industry participation is therefore explicitly included in this seminar.

Invitees are therefore coming from a very diverse group of participants, including computational and experimental scientists, and academic and industrial researchers across the four relevant domains of this seminar. The goal is to uncover as-yet unexplored synergies from interactions within and across these various backgrounds; a process which has already proven highly effective and inspiring in previous Dagstuhl Seminars on Computational Proteomics. A strong focus throughout the week thus will be on the free exchange of ideas between participants of different backgrounds to maximally benefit from obvious as well as less obvious synergies and to provide maximal opportunity for cross-fertilization of ideas. To accommodate this, the seminar structure will be quite flexible, allowing for spontaneous working groups to emerge alongside pre-planned ones, and providing opportunity for any interested participant to start a discussion on any related topic of interest.

This interdisciplinary Dagstuhl Seminar is therefore poised to enable novel, breakthrough developments in computational proteomics around the four topics: (i) new applications and methods for advanced machine learning in computational proteomics; (ii) address computational challenges posed by single-cell proteomics; (iii) build on a combination of cutting edge algorithms and novel computational approaches to allow glycan analysis in glycoproteomics; and (iv) reinforce the computational foundation of fast-growing proteomics applications in discovery, characterization, and quality control of (novel) therapeutics.

Motivation text license
  Creative Commons BY 4.0
  Rebekah Gundry, Lennart Martens, and Magnus Palmblad

Dagstuhl Seminar Series


  • Artificial Intelligence
  • Machine Learning
  • Other Computer Science


  • Proteomics
  • Bioinformatics
  • Machine learning
  • Therapeutics
  • Mass spectrometry


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.