27. Februar – 04. März 2022, Dagstuhl-Seminar 22091

AI for the Social Good


Claudia Clopath (Imperial College London, GB)
Ruben De Winne (Oxfam Novib – The Hague, NL)
Rayid Ghani (Carnegie Mellon University – Pittsburgh, US)
Tom Schaul (Google DeepMind – London, GB)

Auskunft zu diesem Dagstuhl-Seminar erteilt

Dagstuhl Service Team


Dagstuhl Report, Volume 12, Issue 2 Dagstuhl Report
Externe Homepage
Gemeinsame Dokumente
Programm des Dagstuhl-Seminars [pdf]


AI and ML have made impressive progress in the last few years. Long-standing challenges like Go have fallen and the technology has entered daily use via the vision, speech or translation capabilities in billions of smartphones. The pace of research progress shows no signs of slowing down, and demand for talent is unprecedented. But as part of a wider AI for Social Good trend, this seminar wanted to contribute to ensuring that the social good does not become an afterthought in the rapid AI and ML evolution, but that society benefits as a whole. The five-day seminar brought together AI and ML researchers from various universities with representatives from NGOs based in Benin, Tanzania, Uganda, The Netherlands and globally. These NGOs all pursue various social good goals, such as improving air quality, increasing agricultural productivity with the help of technology, transforming health care, providing humanitarian support, and defeating poverty. On these topics, NGOs have rich domain knowledge, just like they have vast networks with (non-)governmental actors in developing countries. Mostly, NGOs have their finger on the pulse of the challenges that the world and especially its most vulnerable inhabitants are facing today, and will be facing tomorrow. The objective of the seminar was to look at these challenges through an AI and ML lens, to explore if and how these technologies could help NGOs to address these challenges. The motivation was also that collaborations between AI and ML researchers and NGOs could benefit both sides: on the one hand, the new techniques can help with prediction, data analysis, modelling, or decision making. On the other hand, the NGOs' domains contain many non-standard conditions, like missing data, side-effects, or multiple competing objectives, all of which are fascinating research challenges in themselves. And of course, publication impact is substantially enhanced when a method has real-world impact. The seminar facilitated the exploration of possible collaborations between AI and ML researchers and NGOs through a two-pronged approach. This approach combined high-level talks and discussions on the one hand with a hands-on hackathon on the other hand. High-level talks and discussions focused first on the central concepts and theories in AI and ML and in the NGOs' development work, before diving into specific issues such as generalisability, data pipelines, and explainability. These talks and discussions allowed all participants - in a very short time-frame - to reach a sufficient level of understanding of each other's work. This understanding was the basis to then start investigating jointly through a hackathon how AI and ML could help addressing the real-world challenges presented by the NGOs. At the start of the hackathon, an open marketplace-like setting allowed AI and ML researchers and NGOs to find the best match between technological supply and demand. When teams of researchers and NGOs were established, their initial objective was not to start coding, but to define objectives, assess scope and feasibility. The intense exchanges during the hackathon allowed NGOs with a lower AI/ML maturity increased to increase understanding of the capabilities of AI/ML and define actions to effectively start working with AI/ML. NGOs that already had a more advanced understanding and use of AI/ML technology prior to the seminar, could take their AI maturity to the next level by trying out new ML approaches, designing and testing tailored ML models, or simply exploring new partnerships. Key to this success of the hackathon - and the seminar at large - was the presence of AI/ML experts whose respective fields of expertise could seamlessly be matched with the various needs of the various NGOs. This excellent group composition also facilitated a productive discussion about guidelines on how to do effective AI for social good collaborations in the future (e.g. by focusing on long-term partnerships, and by sequencing problem scoping before data cleaning and - only in last instance - an actual hackathon).

Summary text license
  Creative Commons BY 4.0
  Ruben De Winne

Related Dagstuhl-Seminar


  • Artificial Intelligence
  • Computers And Society
  • Machine Learning


  • Artificial intelligence
  • Machine learning
  • Social good
  • Humanitarian
  • Development


In der Reihe Dagstuhl Reports werden alle Dagstuhl-Seminare und Dagstuhl-Perspektiven-Workshops dokumentiert. Die Organisatoren stellen zusammen mit dem Collector des Seminars einen Bericht zusammen, der die Beiträge der Autoren zusammenfasst und um eine Zusammenfassung ergänzt.


Download Übersichtsflyer (PDF).

Dagstuhl's Impact

Bitte informieren Sie uns, wenn eine Veröffentlichung ausgehend von Ihrem Seminar entsteht. Derartige Veröffentlichungen werden von uns in der Rubrik Dagstuhl's Impact separat aufgelistet  und im Erdgeschoss der Bibliothek präsentiert.


Es besteht weiterhin die Möglichkeit, eine umfassende Kollektion begutachteter Arbeiten in der Reihe Dagstuhl Follow-Ups zu publizieren.