Self-Stabilization

organized by

Prof. Dr. S. Dolev (Ben Gurion University, Israel)
Prof. Dr. A. Arora (Ohio State University, USA)
Prof. Dr. W.-P. de Roever (University of Kiel, Germany)

Preface

Distributed systems substantially improve our ability to compute and
exchange information, as is evidenced by the dramatic success of the so-called
World Wide Web. At the same time, distributed systems —and computer
networks in particular— are hard to design, control, and maintain, as they
consist of a variety of complex hardware and software components that are
subject to faults and dynamic changes.

Self-stabilization has emerged as a promising paradigm for the design,
control, and maintenance of fault-tolerant distributed systems. As its name
suggests, self-stabilization enables systems to automatically recover from the
occurrence of faults. Its essential idea is this: Regardless of what state a
system is placed in, by virtue of being self-stabilizing, the system converges
to desired behavior. Thus, even if faults cause the system to be placed in an
arbitrary state, the system can eventually resume its desired behavior.

The field of self-stabilization is young and rapidly growing. To facilitate
research in this field, experts in this field and in allied fields were invited
to share their research interests and work with each other. The Dagstuhl
Seminar on ”Self-Stabilization” brought together thirty five researchers from
seven different countries. The opening talk was given by Edsger W. Dijkstra,
then an overview of the state-of-the-art and future directions was provided by
Shmuel Katz. The talks that followed presented new results and directions:

e Formal methods for verification and specification of self-stabilizing al-
gorithms,

e Use of the self-stabilization concept in the context of security and pri-
Vacy,

e Integration with other fault models,
e Transient fault detectors,

e Design frameworks for achieving self-stabilization and other fault tol-
erances,

e Self-stabilizing algorithms and their time/space efficiency; impossibility
results

The pleasant atmosphere of Dagstuhl was an important incentive for the
lively interaction between the participants. The success of the seminar in
stimulating new ideas and dialogue has led us to start planning the next
seminar two years hence. We would like to thank all who contributed to
the seminar, and in particular the encouragement we received from Professor
Dr. Reinhard Wilhelm. The support of the TMR Program of the European
Community is gratefully acknowledged.

The organizers Shlomi Dolev
Anish Arora
Willem-Paul de Roever

Contents

The Influence of Self-Stabilization on Cryptographic Research
Moti Yung 6

Introduction to Compositional Proof Methods for Program Correctness
Willem-Paul de Roever 6

Components for Fault-Tolerance: Theory and Application
Anish Arora 7

A Solution for a Peculiar Instance of the Consensus Problem
Augusto Ciuffoletti 7

New Tools and Lower Bounds for Self-Stabilizing Mutual Exclusion
Vincent Villain 8

Distributed Self-Stabilizing Algorithms
Tobias Vesper 9

On the Relationship between Self-Stabilization and Fault Tolerance
Felix Gartner 9

Local Stabilization
Shlomi Dolev 10

Fault-Tolerance Patterns in Network Management Applications
Sandeep Kumar Shukla 10

Specification of Hybrid Components of Control Systems
Juri Vain 11

Deterministic and Self-Stabilizing Leader Election Protocol
Colette Johneno 12

Randomized Self-Stabilizing Leader Election
Joffroy Beauquier L.

Evaluating Self-Stabilization
Shmuel Katz

Self-Stabilizing Depth-First Token Circulation in Rooted Networks
Ajoy Kumar Datta

Self-Stabilizing Timestamps
Uri Abraham

A Foundation for Secure Computing
Mohamed Gouda o

Synthesis of Self-Stabilizing Programs with Many Similar Processes
Paul Attie

Formal Verification of Stabilizing Systems
Michael Siegelo

The Influence of Self-Stabilization on
Cryptographic Research
Moti Yung

We cover the development of cryptographic multi-party protocols under
the notion of “mobile adversary” introduced in [PODC91, Ostrovsky-Yung].
The setting allows “perpetual faults” which move in the network while their
presence is limited to a certain threshold t (e.g. minority of processors).
Processors keep on failing and recovering

Under this adversarial setting we develop the notion of “proactive secu-
rity” of protocols. This notion requires the processors in the system to take
actions at well defined time units periodically to assure security and availabil-
ity of the service provided by the processors. The actions are memory era-
sures and refreshment as well as memory recovery and processor-rejoins. The
old local memory of processors are erased while the global value represented
by them is maintained (this is a t-wise rerandomization of the memories).

We present generic “proactive secure distributed computation” (under
mobile adversary), where the processors compute a known function (Boolean
circuit) over private inputs and compute correct output while maintaining
the secrecy of the inputs (e.g., secure ballot election). We also cover the
more practical “proactive distributed public key systems” which is a current
area of extensive research. In this setting, the private key (for signing or
decryption) is distributed to the processors and a cryptographic operation
requires a quorum of processors (for availability and control). The security is
assured as long as within a well defined period, the adversary cannot break
more than t processors; (note that in regular public key system, the breaking
of one processor memory compromises the system). The setting allows us to
add and omit devices as well as changing the threshold parameter t itself.

Introduction to Compositional Proof

Methods for Program Correctness
Willem-Paul de Roever

Formal methods to specify and verify concurrent programs with syn-
chronous message passing are discussed. I stress the development towards
compositional methods, i.e., methods in which the specification of a com-
pound program can be inferred from its constituents without reference to

the internal structure of those parts. Compositionality enables verification
during the process of top-down design - the derivation of correct programs -
instead of the more familiar a-posteriori verification based on already com-
pleted program code. I sketch the transition from non-compositional to com-
positional methods for concurrent programs, indicating the main principles
behind compositionality, and discuss the main compositional frameworks us-
ing Hoare triples as basis.

Components for Fault-Tolerance: Theory and
Application
Anish Arora
http://www.cis.ohio-state.edu/~anish

The thesis of our talk is that a fault-tolerant system is a fault-intolerant
system encapsulated with tolerance components. We formally substantiate
the generality of this thesis and present its application in the design of a
scalable internet server that is stabilizing tolerant.

A Solution for a Peculiar Instance of the
Consensus Problem
Augusto Ciuffoletti
http://www.di.unipi.it/~augusto/pub/dag 98331

We introduce a solution to a peculiar instance of the consensus problem.
The motivation for this specific problem is in the fact that it models the part
of a distributed clock synchronization problem which is not related with real
time.

The solution is based on the diffusion of a request from the peripheral
units to the privileged units, that respond with the value of a reference clock
(to which they have a privileged access), which is diffused in the opposite
direction. The diffusion is controlled by a hierarchical arrangement of the
units, which operate following a 3-state self-stabilizing algorithm. The overall
behavior is modeled as a series of waves, that propagate in the system, and
that are periodically triggered by peripheral units.

One interesting property of the algorithm is the absence of statements
explicitly aimed at recovering from non-legitimate states.

7

The correctness proofs outlined in the seminar have been carried out using
the ”Unity” tool (by Chandy and Misra).

New Tools and Lower Bounds for
Self-Stabilizing Mutual Exclusion

Vincent Villain

The concept of self-stabilization was introduced by Dijkstra. He pre-
sented three stabilizing solutions to the mutual exclusion problem on the
asynchronous rings with sense of direction. His solutions were later proven
to be correct under both central and distributed daemon. One of the three
algorithms also works on the linear arrays. The number of possible config-
urations in this algorithm is 27 * 4Nr2, where n is the number of processors
on the array. Another algorithm (among the three) presented in his paper
works only on rings and has 3" configurations, where n is the size of the ring.
In his paper, a processor is considered to have a (mutual exclusion) privilege
“if and only if it is enabled to make any move”. Tchuente proved that with
this definition of “privilege”, the two algorithms of Dijkstra (as mentioned
above) have the minimal number of configurations.

In this paper, we change the strict definition of privilege (as defined by
Dijkstra) to the following: A processor has the mutual exclusion privilege
“if and only if it is enabled to make a particular move”. We first present
a synchronous algorithm which needs only n * vl configurations. Then
we show that with a strongly fair central daemon, the lower bound is 2~
configurations. Finally, we prove that the lower bound of the number of
configurations in the general case is 2 * ale,

We present several mutual exclusion algorithms which match the above
lower bound. The main idea behind all these optimal algorithms is the in-
troduction of a new tool, called the “cleaner”. In addition to the mutual
exclusion algorithms presented in this paper, the usefulness of the cleaner
has already been demonstrated by applying it to the design of efficient (both
in terms of time and space) self-stabilizing algorithms for other applications,
such as, the “depth first token circulation” and the “propagation of informa-
tion with feedback”—both in tree networks. These algorithms can be used on
general networks by combining them with any existing self-stabilizing span-
ning tree construction algorithms. We are currently working on the design

of these algorithms for the general networks without maintaining spanning
trees.

Distributed Self-Stabilizing Algorithms
Tobias Vesper

We consider two versions of a load-balancing algorithm for a uniform ring
of processors. The first version is designed for a shared-variable model. This
version is self-stabilizing; meaning that if an error occurs that forces the
system to an arbitrary state then the algorithm will eventually re-balance
the system. Therefore, the system can tolerate any modification of variables.

In the second part of the talk we present a message-passing model. We de-
rive a new load-balancing algorithm for this model. Though strictly speaking
the algorithm is not self-stabilizing, it tolerates any modification of variables
and of messages. We present a Petri net model and sketch the proof of the
basic properties.

On the Relationship between

Self-Stabilization and Fault Tolerance
Felix Gartner

The paradigm of self-stabilization was introduced as a theoretical con-
cept without a clear relation to fault tolerance. Traditionally, fault tolerance
has taken the view that only a subset of nodes may be affected by perma-
nent faults, while in self-stabilization all nodes may experience some form
of transient faults. In this talk, I elaborated on the changing perception of
self-stabilization as being a paradigm to also deal with permanent faults.
Building on the different forms of fault tolerance (masking, non-masking,
fail-safe) presented in the talk by Anish Arora, I identified self-stabilization
as being an extreme form of non-masking fault tolerance that can also deal
with a large class of permanent faults. A first characterization of the faults
from this class was given: they must be eventually detectable, not destroy
vital redundancy and must be “stable” for a sufficiently long period of time.
A small example was presented, implications and problems were discussed.

Local Stabilization
Shlomi Dolev

Methods for detecting the occurrence of transient faults in distributed
systems are presented. The techniques are local in the sense that faults
are detected within a single time unit. The memory requirement for the
implementation of these techniques will be discussed. First proving that there
is no failure detector with a constant amount of memory for the distributed
rooted tree construction task. Then presenting a failure detector for every
distributed algorithm, using a large amount of memory. In the last part
of the talk, we will show that different tasks requires different amount of
memory for implementing their distributed failure detectors.

The talk summarizes joint works with Mohamed Gouda, Marco Schneider,
Yehuda Afek, Joffroy Beauquier, Sylvie Deleat and Sebastien Tixeuil

Fault-Tolerance Patterns in Network
Management Applications
Sandeep Kumar Shukla

A client server based network management application comprises of hard-
ware and software components that cooperate to achieve the network man-
agement functionalities. Usually, these components are agents with specific
data models, control logics, and user interfaces. These agents are organized
in a tree-like hierarchy, with the servers at the top of the hierarchy, and the
clients at the bottom. The clients are the agents that continually reflect the
state of the network. Each agent has data models to represent the states of
each network element of the network being managed.

In the fault-management arena of network management, we show that in
most cases this hierarchy is actually a realization of the well known PAC
(Presentation-Abstraction-Control) architectural pattern with the modifica-
tion that all the bottom level agents are actually observers of the ongoing
changes in the network state. So we describe this modified design pattern as
MOPAC (multiple observer presentation-abstraction-control) architectural
pattern. We then formulate an invariant that should hold in such an agent
system for correct operation. Since, the network state changes perpetually,
this invariant is formed with a time bound. For this time interval around
any point in time, if the network changes are stopped, the data models for

10

a particular network element, at every agent should reflect the same state.
This should be true of all network elements.

This formulation of the invariant leads to a formalization of the fault-
tolerance requirements in such systems. Since the top level agents (servers)
are prone to crash, and are critical components in the hierarchy, the fault class
considered is the “crash of server agents”. It is absolutely imperative that the
invariant remains true even when such agents crash. Depending on whether
we impose the strong requirement that the invariant should be true all the
time, even during the time a crash occurs, or whether for a reasonable time
period, we may tolerate the invariant to be falsified, we formulate two fault-
tolerance design patterns, namely MF-MOPAC (Masking Fault-Tolerant
MOPAC), and NMF-MOPAC (NonMasking Fault-Tolerant MOPAC).

These are the first design patterns in the literature that we know of, that
has fault-tolerance requirement as the primal design force to be resolved.
Some other design patterns such as broker pattern, dispatcher pattern, per-
sistence pattern obtain some limited fault-tolerance as a byproduct of the
respective strategies employed to resolve other design forces.

We also discuss some self-stabilization patterns which arise while consid-
ering the preservation of this invariant when the monitoring agents dynami-
cally join or withdraw from the system, or when version updates take place
at various agents.

Specification of Hybrid Components of

Control Systems
Jiiri Vain

Construction of formal sensor specifications is discussed within the con-
text of stepwise refinement design discipline of control systems. The specifi-
cation scheme developed constitutes a framework for systematic specification
and verification of functional as well dependability properties and their dy-
namic during component’s life cycle. The framework relies on abstract phase
transition systems formalism. It defines main phases, phase invariants, and
gives explicit characterization of gradual corruption process of sensors. As a
case study an integrating temperature sensor specification derived according
this scheme is described.

11

Deterministic and Self-Stabilizing Leader

Election Protocol
Colette Johnen
http://www.lri.fr/“colette/

A protocol needs only constant space if required memory space on each
processor depend on the processor degree and not on the system size. The
interest of constant space protocols is that when the system changes its size
(a global property, that cannot be locally checked), the local protocol im-
plementations do not need to be changed. The implementation on a proces-
sor should be modified, only when the processor degree increases (a locally
checkable property). We determine when it is possible to design deterministic
self-stabilizing leader election algorithms requiring constant memory space.

First, we study uniform systems: processor does not have any identifier.
We prove that the lower bound of memory space required by a deterministic
self-stabilizing algorithm on unidirectional, uniform prime-size rings is at
least log(N) (N being the ring size).

Then, we study id-based systems: processors have distinct hardware iden-
tities that cannot be corrupted. We prove that if there is a self-stabilizing
algorithm on id-based systems where the processor memory space is constant
and the id-values are not bounded, then there is a self-stabilizing algorithm
on uniform systems requiring constant memory size. Thus, the decidability
results obtained on uniform rings can be extended to that kind of id-based
rings.

Finally, we study the problem in the case of id-based rings where the
processor memory space is constant and the id-values are bounded: we give
a silent algorithm. A self-stabilizing algorithm is silent if once the system is
stabilized, the values of local variables are fixed (write operations are totally
eliminated); thus, the processors will only check their neighbor states. The
silence property of self-stabilizing algorithms is a desirable property in terms
of simplicity and communication/CPU overhead.

Randomized Self-Stabilizing Leader Election

Joffroy Beauquier

We present a new self-stabilizing leader election algorithm in rings of any
size, that used O(log n) bit per process if n is a factorial, and O(log (log n))

12

bit on average. The proof uses a new modelization of the daemon, through
the notion of restricted execution forest and presents a technique that can
be used for a large class of randomized algorithms. The aim of the model
is to separate randomization (in the protocol) and non-determinism (in the
daemon). We prove that the algorithm is space optimal.

This work is common with Maria Gradinariu and Colette Johnen.

Evaluating Self-Stabilization
Shmuel Katz

The goals, problems, achievements, and remaining challenges of self-
stabilization were analyzed in this talk—obviously a personal perspective. The
overriding goal in this area is seen as gaining acceptance of self-stabilization
as a standard form of fault-tolerance. To achieve this, developing algorithms,
transformations, complexity measures, and clearly stated models of compu-
tation are crucial. To these should be added the goals of compositionality
and modularity of both algorithms and correctness reasoning.

Among the problems in this area are the common perception of self-
stabilization as too strong a fault-model for distributed systems. Both data
and control are arbitrary in an initial state, with nothing safe from corrup-
tion, a stable state cannot be reliably identified from within the system,
and the algorithms are inherently non-terminating. Other problems with
self-stabilization are self-inflicted by the research community: papers that
ignore significant differences in computational models, use unstated limiting
assumptions, and advocate problematic complexity measures. Beyond these
obstacles to acceptance, self-stabilization is seen as ‘different’ from other
types of faults, orthogonal to crash, send-receive, or Byzantine faults.

After considering alternative definitions of the term, and the variety and
sensitivity of related models, the value of general techniques was emphasized.
Among these are prodding— having some process able to send a message with-
out receiving one first, stamping— adding process ids of those processes that
receive information before passing it on, and flushing- removing error-filled
initial messages by guaranteeing that fresh round numbers are generated.
Especially valuable are techniques for composing self-stabilizing algorithms.
One way to verify a parallel composition is to show that each component
does not interfere with the proof of correctness of the other component.

13

Such techniques should be reused and further developed, precise proof
schemas and robust complexity measures should be used, and appropriate ap-
plication areas should be identified to allow fully integrating self-stabilization
into general fault-tolerance.

Self-Stabilizing Depth-First Token

Circulation in Rooted Networks
Ajoy Kumar Datta
http://www.laria.u-picardie.fr/~petit /publi/DJPV98.ps.gz

We present a deterministic distributed depth-first token passing protocol
on a rooted network. This protocol uses neither the processor identifiers
nor the size of the network, but assumes the existence of a distinguished
processor, called the root of the network. The protocol is self-stabilizing,
meaning that starting from an arbitrary state (in response to an arbitrary
perturbation modifying the memory state), it is guaranteed to reach a state
with no more than one token in the network. Our protocol implements a I-
fair token circulation scheme, i.e., in every round, every processor obtains the
token once. The proposed protocol has extremely small state requirement—
only 3(A + 1) states per processor, i.e., O(logA) bits per processor, where A
is the degree of the network.

The protocol can be used to implement a fair distributed mutual exclusion
in any rooted network. This protocol can also be used to construct a DFS
spanning tree.

Self-Stabilizing Timestamps
Uri Abraham

Messages are often timestamped. In a fax, the timestamp includes the
date and exact time of the day, and in a book only the publication year,
but in all cases this information guides the reader in choosing and processing
the data. The antiquarian may choose the oldest book, and the student
the newest edition, but in the general timestamp protocol the reader (called
scanner) returns all the messages in their issuing order.

A new kind of timestamps is introduced in this paper: it is weaker than
the regular one and is hence easier to construct. We build these weaker times-
tamps and our construction yields a self-stabilizing protocol (with bounded

14

values). It turns out that these weak timestamps suffice for implementing
mutual-exclusion, ¢-exclusion, and atomic register protocols. Hence we have
self-stabilizing solutions for these protocols. I believe that these weaker times-
tamps may be efficiently used to replace (unbounded) regular timestamps in
some other protocols. Indeed, the weak timestamps can also be used to im-
plement regular timestmps, and hence we get here self-stabilizing (regular)
timestamps.

A Foundation for Secure Computing
Mohamed Gouda

We argue that three fundamental concepts of stabilization theory are
adequate to explain system security. These three concepts are closure, con-
vergence, and protection. Our argument is based on the view that a secure
system has good states and bad states such that the following three condi-
tions hold. First, the set of good states is closed under system execution,
and the set of good and bad states is closed under both system execution
and adversary interference. Second, any system execution that starts at a
bad state eventually converges to a good state. Third, each critical variable
of the system is protected from being updated, as a result of some adversary
interference, during any system transition from a bad state or during any
system transition into a bad state. We use these concepts to state and verify
the security of several systems, including one for transmitting data between
two processes.

Synthesis of Self-Stabilizing Programs with

Many Similar Processes
Paul Attie

Methods for synthesizing concurrent programs from temporal logic spec-
ifications eliminate the need to manually compose a program and manually
construct a correctness proof. These methods rely on some form of explicit
state enumeration and are therefore subject to state explosion. In previous
work (joint with Allen Emerson, University of Texas, Austin) we avoided
state explosion by constructing explicit products of small numbers of pro-
cesses only. Our method then generates an arbitrarily large (i.e., parame-
terized) program syntactically. In this talk, we outline an extension of the
method so that the synthesized program is self stabilizing.

15

Formal Verification of Stabilizing Systems
Michael Siegel

The talk presents a link between too formerly rather disjoint research
areas: formal verification and stabilization. After a brief introduction to
the principles and the design of stabilizing systems, a fully syntactical for-
mal framework for phased, i.e. modular, verification of stabilizing systems is
presented.

This framework is based on fair transition systems, linear temporal logic
and refinement theory. It replaces the hitherto informal reasoning in the field
of stabilization and constitutes the basis for machine-supported verification
of an important class of distributed algorithms.

16

