
Schedule for Dagstuhl workshop 25231 "Certifying Algorithms for Automated Reasoning"

Time (ca) MONDAY JUN 2 TUESDAY JUN 3 WEDNESDAY JUN 4 THURSDAY JUN 5 FRIDAY JUN 6 Time (ca)

08:45 8:45-9:00: Welcome 08:45

09:00 9:00-9:50 9:00-9:50 9:00-9:50 9:00-9:30 9:00-9:30 09:00

09:15 Certified SAT solving Certified automated planning Certified QBF solving Janota: Graph symmetries Weidenbach: Certification in SCL 09:15

09:30 Fazekas Helmert Seidl 9:30-10:00 9:30-10:00 09:30

09:45 9:50-10:40 9:50-10:40 9:50-10:40 Szeider: Symmetries in SAT & QBF Sutcliffe: Proof verification GDV 09:45

10:00 Certified subgraph solving Certified SMT solving Certified first-order theorem proving 10:00-10:30 10:00-10:30 10:00

10:15 McCreesh Barbosa Rawson Anders: Faster certified symmetries Schindler: Certified optimal planning 10:15

10:30 COFFEE BREAK COFFEE BREAK COFFEE BREAK COFFEE BREAK COFFEE BREAK 10:30

10:45 10:45

11:00 11:10-12:00 11:10-12:00 11:10-12:00 11:00-11:30 11:00-11:30 11:00

11:15 Certified constraint programming Certified model counting and Formally verified Reynolds: Proofs for cvc5 Fleury: Consuming CaDiCaL proofs 11:15

11:30 McIlree knowledge compilation proof checking 11:30-12:00 11:30-12:00 11:30

11:45 Bryant Myreen & Tan Gurfinkel: Speculative SAT mod SAT Oliveras: Symbolic conflict analysis 11:45

12:00 12:00

12:15 LUNCH LUNCH LUNCH LUNCH LUNCH 12:15

12:30 12:30

12:45 WORKSHOP ENDS 12:45

13:00 13:00

13:15 LEGEND 13:15

13:30 Long talk (50 min) 13:30

13:45 Short talk (30 min) 13:45

14:00 14:10-15:00 WEDNESDAY Other 14:00

14:15 Proof logging for 14:15

14:30 algebraic algorithms AFTERNOON 14:30-15:30 14:30

14:45 Kaufmann Panel discussion 14:45

15:00 COFFEE & CAKE 15:00-15:30 FREE The future of certifying algorithms 15:00

15:15 Bogaerts: Certified pareto optimality 15:15

15:30 COFFEE & CAKE COFFEE & CAKE 15:30

15:45 15:40-16:30 15:45

16:00 Proof logging for MIP 16:00-16:30 16:00-16:30 16:00

16:15 Gleixner Beyer: Verification witnesses Baader: Certifying subsumptions 16:15

16:30 16:30-17:00 16:30-17:00 16:30-17:00 16:30

16:45 Koops: Certified PB optimization Biere: Certified HW model checking Abraham: Certifying real algebra 16:45

17:00 17:00-17:30 17:00-17:30 17:00

17:15 Oertel: Certified preprocessing Seisenberger: Railway verification FREE TIME FOR 17:15

17:30 17:30-18:00 17:30-18:00 DISCUSSIONS 17:30

17:45 Presentation of participants Reeves: Trimming SMT proofs 17:45

18:00 DINNER DINNER DINNER DINNER 18:00

18:15 18:15



Dagstuhl Workshop 25231
Certifying Algorithms for Automated Reasoning

Sunday, June 1st, 2025 – Friday, June 6th, 2025

Nikolaj S. Bjørner, Microsoft - Redmond, US
Marijn J. H. Heule, Carnegie Mellon University - Pittsburgh, US
Daniela Kaufmann, TU Wien, AT
Jakob Nordström, University of Copenhagen, DK & Lund University, SE

Please feel free to direct any questions to us!

General Information

Please be aware that you will need the username and password of your DOOR account (i.e., the credentials
you used to register for the seminar) while in Dagstuhl.
The Dagstuhl reception is located in the facility opposite the manor house. The reception is open from
15:00 to 19:00 on Sunday and from 8:00 to 16:00 on other days. If it is closed when you arrive, please use
the access code in your voucher to enter the building and then follow the self-service check-in procedure
described at the reception.
Departure is on Friday June 6. Dagstuhl kindly asks you to clear your room by 9:00 and to pay your bill
for accommodation, meals and your private expenses on the day of your departure before lunch.

Meals

Breakfast is served from 7:30 to 8:45.
Lunch is served at 12:15.
Dinner is served at 18:00.
During the morning break, coffee and tea are available outside the seminar room.
In the afternoon, coffee and cake are served between 15:00 and 16:00 in the dinner hall.
In the evening, a cheese platter is served from 20:00 in the castle lounge.



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Sunday, June 1st, 2025

15:00 Dagstuhl reception opens

18:00 Buffet dinner

Welcome!
20:00 Informal gathering in the lounge in the castle (if desired)

Beverages and a small assortment of snacks are available on a cash honour system.



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Monday, June 2nd, 2025

07:30–08:45 Breakfast

08:45–09:00 All participants
Welcome

Morning session09:00–09:50 Katalin Fazekas
Certified SAT Solving

09:50–10:40 Ciaran McCreesh
Proof Logging for Subgraph-Finding Algorithms

10:40–11:10 Coffee break

11:10–12:00 Matthew McIlree
Certified Constraint Programming

12:15 Lunch

Afternoon session14:10–15:00 Daniela Kaufmann
Certifying Ideal Membership Tests

15:00–15:40 Coffee and cake

15:40–16:30 Ambros Gleixner
Proof logging for Mixed-Integer Programming

16:30–17:00 Wietze Koops
Practically Feasible Proof Logging for Pseudo-Boolean Optimization

17:00–17:30 Andy Oertel
Certifying Presolving/Preprocessing for 0-1 Integer Linear Programming and MaxSAT

17:30–18:00 Presentation of participants

18:00 Dinner

20:00 Cheese platter



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Tuesday, June 3rd, 2025

07:30–08:45 Breakfast

Morning session09:00–09:50 Malte Helmert
Certified Automated Planning

09:50–10:40 Haniel Barbosa
SMT Proof Production, Checking and Reconstruction

10:40–11:10 Coffee break

11:10–12:00 Randal E. Bryant
Checkable Proofs for Model Counting and Knowledge Compilation

12:15 Lunch

Afternoon session15:00–15:30 Bart Bogaerts
Certifying Pareto Optimality in Multi-Objective Maximum Satisfiability

15:30–16:00 Coffee and cake

16:00–16:30 Dirk Beyer
Certifying Software Verification

16:30–17:00 Armin Biere
Certifying Hardware Model Checking

17:00–17:30 Monika Seisenberger
Certifying RUP proofs in the context of Railway Verification

17:30–18:00 Joseph Reeves
Theory Lemma Trimming for SMT Proof Skeletons

18:00 Dinner

20:00 Cheese platter



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Wednesday, June 4th, 2025

07:30–08:45 Breakfast

Morning session09:00–09:50 Martina Seidl
Certified QBF Solving

09:50–10:40 Michael Rawson
Certified First-Order Theorem Proving: confessions, excuses and a few ways out.

10:40–11:10 Coffee break

11:10–12:00 Yong Kiam Tan & Magnus O. Myreen
The Past, Present, and Future of Verified Proof Checkers

12:15 Lunch

18:00 Dinner

20:00 Cheese platter



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Thursday, June 5th, 2025

07:30–08:45 Breakfast

Morning session09:00–09:30 Mikoláš Janota
Graph Symmetries, Patterns, and Encodings

09:30–10:00 Stefan Szeider
Certifying Dynamic Symmetry Breaking in SAT and QBF

10:00–10:30 Markus Anders
Faster Certified Symmetry Breaking in SAT

10:30–11:00 Coffee break

11:00–11:30 Andrew Reynolds
Engineering Complete SMT Proofs in cvc5 with Ethos/Eunoia

11:30–12:00 Arie Gurfinkel
Speculative SAT modulo SAT

12:15 Lunch

Afternoon session14:30–15:30 Panel discussion The future of certifying algorithms

15:30–16:00 Coffee & cake

16:00–16:30 Franz Baader
First Results on How to Certify Subsumptions Computed by the EL Reasoner
ELK Using the Logical Framework with Side Conditions

16:30–17:00 Erika Abraham
The certification problem for real algebra

17:00–18:00 Free time for discussions

18:00 Dinner

20:00 Cheese platter



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Friday, June 6th, 2025

07:30–08:45 Breakfast

Morning session09:00–09:30 Christoph Weidenbach
Certification in SCL

09:30–10:00 Geoff Sutcliffe
Proof Verification with GDV and LambdaPi - It’s a Matter of Trust

10:00–10:30 Tanja Schindler
Proof Logging for Optimal Planning

10:30–11:00 Coffee break

11:00–11:30 Mathias Fleury
How to consume CaDiCaL proofs?

11:30–12:00 Albert Oliveras
PB Symbolic Conflict Analysis

12:15 Lunch



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Abstracts

Erika Abraham
The certification problem for real algebra
SMT solvers’ traditional functionality is to check the satisfiability of quantifier-free formulas of first-order logic over
different theories.
With their increasing efficiency and usage, this original functionality is being extended in different directions. One if
them is the ability to provide some kind of assurance for the correctness of the computations, most prominently in the
form of certificates.
Whereas some SMT solvers can already provide certificates for a wide range of theories, the theory of (quantifier-free
non-linear) real algebra poses a hard challenge, and a solution seems to be yet completely out of reach.
In this talk, we discuss why this problem is especially hard, and which directions could be considered to make some
progress.

Markus Anders
Faster Certified Symmetry Breaking in SAT
Symmetry breaking is a standard technique in many areas of automated reasoning. Recently, the possibility for proof
logging symmetry breaking techniques in SAT solvers has become available by means of the dominance rule and
VeriPB proof system [Bogaerts et al., 2023]. It turns out however, that the proposed logging and checking techniques
pose a severe bottleneck for efficient, modern symmetry handling algorithms. In this talk, I will give a brief overview
of symmetry handling algorithms and related proof logging techniques. Then, I will discuss recent developments to
improve logging and checking performance, as well as some of the remaining challenges.

Franz Baader
First Results on How to Certify Subsumptions Computed by the EL Reasoner ELK Using the Logical
Framework with Side Conditions
The generation of proof certificates and the use of proof checkers is nowadays standard in first-order automated
theorem proving and related areas. They have, to the best of our knowledge, not yet been employed in Description
Logics, where the focus was on detecting and repairing errors in the ontology, rather than on catching erroneous
consequences created by an incorrect reasoner. This paper reports on first steps towards remedying this deficit for
subsumptions computed by the DL reasoner Elk. We use an existing tool for generating proofs of consequences from
Elk, and transform these proofs into a format that is accepted as certificates by our proof checker. The checker is
obtained as an instance of a generic certification tool based on the Logical Framework with Side Conditions (LFSC), by
formalizing the inference rules of Elk in LFSC. We report on the results of applying this approach to the classification
of a large number of real-world OWL 2 EL ontologies.

Haniel Barbosa
SMT Proof Production, Checking and Reconstruction
SMT solvers can be hard to trust, since it generally means assuming their large and complex codebases do not
contain bugs leading to wrong results. Machine-checkable certificates, via proofs of the logical reasoning the solver has
performed, address this issue by decoupling confidence in the results from the solvers implementation. In this talk
we will describe the extensive proof infrastructure of the state-of-the-art SMT solver cvc5, which has enabled the
production of proofs in a number of complex domains. We will also show how these proofs are checked or reconstructed
in different formats by different systems, from ad-hoc high-performance proof checkers to proof assistants such as
Lean.



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Dirk Beyer
Certifying Software Verification
Over the last years, certifying software verification has become an established practice in the area of automatic
software verification: An independent validator re-establishes verification results of a software verifier using verification
certificates (also called witnesses), which are stored in a standardized exchange format. In addition to validation, such
exchangeable information about proofs and alarms found by a verifier can be shared across verification tools, and users
can apply independent third-party tools to visualize and explore certificates to help them comprehend the causes of
bugs or the reasons why a given program is correct. To achieve the goal of making verification results more accessible
to engineers, it is necessary to consider certificates as first-class exchangeable objects, stored independently from the
source code and checked independently from the verifier that produced them, respecting the important principle of
separation of concerns. We present the conceptual principles of software-verification certificates and illustrate the
contents of such certificates.
Material:
- Software Verification Witnesses 2.0 https://doi.org/10.1007/978-3-031-66149-5_11
- Verification Witnesses https://doi.org/10.1145/3477579

Armin Biere
Certifying Hardware Model Checking
Design faults in hardware design are costly. Thus hardware model checking has routinely been applied during the chip
design process for decades. However, both academic and industrial model checkers are complex software tools and
arguably hard to get correct. To increase trust in model checkers we therefore propose a model checking certification
flow. The model checker produces a witness circuit which simulates the original model and for safety properties has
an inductive property implying the original property. Checking simulation and inductiveness can be done by SAT
solving. We have applied this idea to different model checking techniques, particularly preprocessing techniques. The
single safety property track of the hardware model checking competition in 2024 required all participants to produce
such certificates. The competition showed that certification is possible and cheap, i.e., both with respect to certificate
production and checking. Furthemore the winner of the competition surpases the previous state-of-the-art, while
producing machine checked witnesses. This is joint work with Emily Yu, Nils Froleyks, Mathias Preiner and Keijo
Heljanko.

Bart Bogaerts
Certifying Pareto Optimality in Multi-Objective Maximum Satisfiability
Due to the wide employment of automated reasoning in the analysis and construction of correct systems, the results
reported by automated reasoning engines must be trustworthy. For Boolean satisfiability (SAT) solversand more
recently SAT-based maximum satisfiability (MaxSAT) solverstrustworthiness is obtained by integrating proof logging
into solvers, making solvers capable of emitting machine-verifiable proofs to certify correctness of the reasoning
steps performed. In this work, we enable for the first time proof logging based on the VeriPB proof format for
multi-objective MaxSAT (MO-MaxSAT) optimization techniques. Although VeriPB does not offer direct support
for multiobjective problems, we detail how preorders in VeriPB can be used to provide certificates for MO-MaxSAT
algorithms computing a representative solution for each element in the non-dominated set of the search space under
Pareto-optimality, without extending the VeriPB format or the proof checker. By implementing VeriPB proof logging
into a stateof-the-art multi-objective MaxSAT solver, we show empirically that proof logging can be made scalable for
MO-MaxSAT with reasonable overhead.

Randal E. Bryant
Checkable Proofs for Model Counting and Knowledge Compilation
Knowledge compilers convert Boolean formulas, given in conjunctive normal form (CNF), into representations that

https://doi.org/10.1007/978-3-031-66149-5_11
https://doi.org/10.1145/3477579


Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

enable efficient evaluation of unweighted and weighted model counts, as well as a variety of other useful properties.
Certifying the correctness of a knowledge compilers output, requires proving that 1) the generated formula is logically
equivalent to the input formula, and 2) the generated formula satisfies the structural properties that enable efficient
model counting.
Our Certified Partitioned-Operation Graph (CPOG) proof framework provides a way to encode the output of a
knowledge compiler as well as a set of steps providing a checkable proof of correctness. Most recently, we have
extended this framework to Skolem CPOG (SCPOG) supporting projected knowledge compilation, where a subset
of the variables is abstracted away via existential quantification. Doing so requires a method to encode Skolem
assignments, describing instantiations of the quantified variables.
We have developed formally verified checkers for both CPOG and SCPOG, one in Lean4 and the other in CakeML/HOL.
In doing so, we formally verified the soundness of the frameworks.

Katalin Fazekas
Certified SAT Solving
This talk explores certified SAT solving, which is crucial for establishing trust in the reasoning steps and results of
Boolean Satisfiability (SAT) solvers. We will cover the related fundamental concepts of SAT solving and discuss how
proof-producing solvers and external checkers enable certification. A key focus will be on certifying incremental SAT
solving, an essential technique that allows solvers to efficiently tackle sequences of related problems while maintaining
correctness guarantees.

Mathias Fleury
How to consume CaDiCaL proofs?
CaDiCaL is able to produce 3 different kind of proofs, DRAT, LRAT, and veriPB. In this talk we will discuss how (as
a user) you can access to the steps and process them.

Ambros Gleixner
Proof logging for Mixed-Integer Programming
Standard solvers for mixed-integer linear programming rely define feasibility and optimality of solutions within
numerical tolerances and the correctness of their results, even within these tolerances, is subject to roundoff errors
stemming from the unsafe use of floating-point arithmetic. By contrast, starting with version 10, the open-source MIP
solver SCIP ships a numerically exact solving mode without tolerances and can produce an independently verifiable
proof log for most of the exact solving techniques. Besides giving an overview on these recent advances and remaining
limitations in software for verified MIP solving, we try to gauge to what extent floating-point MIP solvers can be used
directly to produce verifiably correct proof logs. Our computational study with a pure LP-based branch-and-bound
version of SCIP confirms the expectation that in the overwhelming majority of cases, all critical decisions during the
solving process are correct. When errors do occur on numerically challenging instances, they typically affect only a
small, typically single-digit, amount of leaf nodes that would require further processing.

Arie Gurfinkel
Speculative SAT modulo SAT
State-of-the-art model-checking algorithms like IC3/PDR are based on unidirectional modular SAT solving for finding
and/or blocking counterexamples. Modular SAT solvers divide a SAT-query into multiple sub-queries, each solved by
a separate SAT solver (called a module), and propagate information (lemmas, proof obligations, blocked clauses, etc.)
between modules. While modular solving is key to IC3/PDR, it is obviously not as effective as monolithic solving,
especially when individual sub-queries are harder to solve than the combined query. This is partially addressed in
SAT modulo SAT (SMS) by propagating unit literals back and forth between the modules and using information



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

from one module to simplify the sub-query in another module as soon as possible (i.e., before the satisfiability of any
sub-query is established). However, bi-directionality of SMS is limited because of the strict order between decisions
and propagation – only one module is allowed to make decisions, until its sub-query is SAT. In this talk, I will describe
our generalization of SMS, called SPEC SMS, that speculates decisions between modules. This makes it bi-directional
– decisions are made in multiple modules, and learned clauses are exchanged in both directions. We further extend
DRUP proofs and interpolation, these are useful in model checking, to SPEC SMS. We have implemented SPEC SMS
in Z3 and show that it performs exponentially better on a series of benchmarks that are provably hard for SMS.
This is joint work with Hari Govind V K, Isabel Garcia-Contreras and Sharon Shoham.

Malte Helmert
Certified Automated Planning
In my talk, I will introduce the classical planning problem and explain its relevance to the seminar by contrasting it
with SAT. For those that haven’t seen planning before, I hope to provide some basic understanding of the problem
and why it is of interest. For those familiar with planning, I hope to give one or two additional perspectives on
the problem and its complexity. Time permitting, I will also update the seminar participants on research in the
planning community that tackles the main motivating questions of the seminar, in particular discussing results and
open challenges for certifying planning algorithms.

Mikoláš Janota
Graph Symmetries, Patterns, and Encodings
With the objective of breaking symmetries in graphs, we define a graph’s adjacency matrix to be canonical, if and
only if it is lexicographically smallest among matrices of all isomorphic graphs. To break symmetries we introduce
the notion of a pattern, which compactly represents a set of non-canonical graphs. We discuss how patterns can be
reasoned about and encoded. Finally, we look at some experimental results for graphs with a small number of vertices.

Daniela Kaufmann
Certifying Ideal Membership Tests
Deciding ideal membership is a central problem in computer algebra, with wide-ranging applications in geometry,
verification, and symbolic computation. While Gröbner bases provide a complete method for deciding ideal membership,
their outputs are often complex, making certification difficult. I present a framework for certifying ideal membership
tests using a practical algebraic calculus (PAC) that allows tracking polynomial manipulations. The calculus supports
different levels of granularity, allowing proofs to be either concise or detailed; depending on whether the emphasis is
on debugging or efficient proof checking.

Wietze Koops
Practically Feasible Proof Logging for Pseudo-Boolean Optimization
Certifying solvers have long been standard in Boolean satisfiability (SAT), allowing for proof logging and checking
with limited overhead. However, developing similar tools for combinatorial optimization has remained a challenge. A
recent promising approach covering a wide range of paradigms is pseudo-Boolean proof logging, but this has mostly
consisted of proof-of-concept works far from delivering the performance required for real-world deployment.
In this work, we present an efficient toolchain based on VeriPB and CakePB for formally verified pseudo-Boolean
optimization, and implement proof logging for the full range of techniques in the state-of-the-art solvers RoundingSat
and Sat4j. Our experimental evaluation shows that proof logging and checking performance in this much more
expressive paradigm is now quite close to the level of SAT solving, and hence clearly practically feasible.
This is joint work with Daniel Le Berre, Magnus Myreen, Jakob Nordström, Andy Oertel, Yong Kiam Tan, and Marc
Vinyals.



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

Ciaran McCreesh
Proof Logging for Subgraph-Finding Algorithms
Many interesting problems involve finding a little graph inside a bigger graph: for example, maximum clique asks for
the largest set of vertices where everything is adjacent, whilst subgraph isomorphism asks whether a specific pattern
occurs inside a given target graph. Although these problems are computationally hard in theory, in practice solvers
can often handle these problems extremely quickly, even on graphs with thousands of vertices. However, these solvers
are not always perfect, and sometimes contain bugs that lead to wrong answers being produced. I’ll explain how,
using the VeriPB proof system, we can augment these solvers to produce correctness certificates, allowing us to be
confident they have definitely given the right answers. To do this, we’ll need to be able to justify a wide range of
algorithmic inference steps, including colour bounds, all-different filtering, and degree reasoning; perhaps surprisingly,
VeriPB is able to do all of these efficiently, despite not having any notion of what a graph is.

Matthew McIlree
Certified Constraint Programming
Constraint programming (CP) is a powerful paradigm for expressing and solving satisfaction and optimisation problems
involving finite domain variables and high-level constraints. But the implementation and engineering of CP algorithms
can be extremely complex, error-prone, and difficult to test. We are much more likely to trust the output of a solver if
it can provide some kind of certificate of correctness via proof logging.
In this talk, I will discuss the current state of research into adding proof logging to CP solvers. I’ll cover how we
can prove unsatisfiability and optimality; what makes this different from established proof logging technology for
SAT solvers; and the efforts towards devising efficient justification procedures for the huge variety of propagation
algorithms available in the modern CP repertoire.

Yong Kiam Tan & Magnus O. Myreen
The Past, Present, and Future of Verified Proof Checkers
This survey talk will be split into two parts.
First, we will survey various automated reasoning theories/domains where verified proof checkers have been built. We
will also present some of our ongoing work, and we will argue that verification can help enable the design of more
complex proof systems/checkers while preserving trust in the overall certification process.
Then, we will take a deeper dive into verification infrastructure available in various theorem provers. Special focus
will be given to HOL4 and the CakeML project—we have used CakeML to build several end-to-end verified proof
checkers with machine-code level correctness guarantees. We will discuss synergies between what CakeML can bring
to proof checking and what proof checking can bring to CakeML.
Webpage: https://cakeml.org/checkers.html

Andy Oertel
Certifying Presolving/Preprocessing for 0-1 Integer Linear Programming and MaxSAT
It is well known that reformulating the original problem can be crucial for the performance of mixed-integer
programming (MIP) and maximum satisfiability (MaxSAT) solvers. While the idea in both the MIP and MaxSAT
community is the same, the presolving reductions in MIP and preprocessing in MaxSAT apply different techniques
to reformulate the problem. To ensure the correctness of the reformulations, all transformations must preserve the
feasibility status and optimal value of the problem, but there is currently no established methodology to express and
verify the equivalence of two optimization problems.
In this talk, it is presented how pseudo-Boolean proof logging can be used to certify the correctness of a wide range
of modern MIP-based presolving and MaxSAT preprocessing techniques. By combining and extending the VeriPB
and CakePB tools, we obtain a formally verified end-to-end proof checking tool chain to verify the correctness of
reformulations of pseudo-Boolean problems.



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

This talk is based on the following two papers. The first paper was published at CPAIOR 2024 together with Alexander
Hoen, Ambros Gleixner, and Jakob Norström. The second paper was published at IJCAR 2024 together with Hannes
Ihalainen, Yong Kiam Tan, Jeremias Berg, Matti Järvisalo, Magnus O. Myreen, and Jakob Nordström.

Albert Oliveras
PB Symbolic Conflict Analysis
Pseudo-Boolean solvers can be used to deal with optimization by successively solving a series of problems that contain
an additional pseudo-Boolean constraint expressing that a better solution is required. A key point for the success of
this simple approach is that lemmas that are learned for one problem can be reused for subsequent ones.
In this talk we show how, by using a simple symbolic conflict analysis procedure, not only can lemmas be reused
between problems but also strengthened, thus further pruning the search space traversal. In addition, we show how
this technique automatically allows one to infer upper bounds in maximization problems, thus giving an estimation of
how far the solver is from finding an optimal solution. An open problem is to use existing proof checking tools to
certify the output of this procedure.

Michael Rawson
Certified First-Order Theorem Proving: confessions, excuses and a few ways out.
Automated Theorem Provers (ATPs) have been around a long time, but their proof certification ecosystem is nowhere
near as well-developed as, say, SAT solvers. There are several reasons for this: a plurality of proof calculi, equisatisfiable
inferences, and theories, to name a few. I will outline ATP systems and their proof certification, explain some difficult
areas, present some recent developments, and offer a few paths to salvation.

Joseph Reeves
Theory Lemma Trimming for SMT Proof Skeletons
Automated reasoning tools require high trust, prompting modern solvers to produce proof certificates for verification.
In propositional satisfiability (SAT), proof generation and checking are relatively inexpensive, but in satisfiability
modulo theories (SMT), justifying theory lemmas can introduce significant overhead. Recent approaches mitigate this
issue by having the SMT solver produce a proof skeleton containing only the propositional reasoning in the DRAT
format and unjustified theory lemmas, whose justifications are deferred to the checking phase. Preprocessing, a key
element of SMT solving that can be challenging to justify a posteriori, is not justified nor checked. We extend these
approaches by including proofs for preprocessing; by reducing the checker workload via iteratively eliminating theory
lemmas from proof skeletons through SAT solving and proof trimming; and by proposing two justification methods
for theory lemmas: one batches justifications for parallelization, while the other not only checks the theory lemma
justifications but also integrates them into a fully detailed proof that could be checked with standard approaches.
Experimental results on SMT-LIB benchmarks show the benefits of our approach in reducing solving time when
producing proof skeletons that can be effectively checked externally. In particular, the extended trimming techniques
can significantly reduce the number of theory lemmas to be checked beyond standard trimming, thereby improving
sequential and parallel checking times.

Andrew Reynolds
Engineering Complete SMT Proofs in cvc5 with Ethos/Eunoia
Abstract: Over the past 5 years, the SMT solver cvc5 has been instrumented to produce proofs for a majority of its
theories. This talk reports on a new milestone for this work, namely that all mainstream features of cvc5 are 100%
proof producing and checkable in an external proof checker (Ethos). In detail, Ethos is a high performance proof
checker written in around 10k lines of C++. Its native input language is Eunoia, a logical framework for defining
proof systems that is heavily inspired by the forthcoming SMT-LIB version 3.0 language. To engineer complete proofs



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

for cvc5, I will discuss the introduction of a "safe mode" of cvc5, which defines a subset of the features of cvc5 that
are free of known bugs and have complete proof support. The internal proof calculus of cvc5, now known as the
Cooperating Proof Calculus (CPC), has been formalized in around 6500 lines of Eunoia definitions. Notably, this
formalization now covers all mainstream theories of cvc5, including those currently used by industrial users of cvc5.

Martina Seidl
Certified QBF Solving
Over the last years, much progress has been made in theory and practice of solving quantified Boolean formulas
(QBFs). In principle, it is also well understood how to certify solving results found on solvers based on different solving
paradigms like QCDCL as well as abstraction- and expansion-based solving. QBF certification is strongly inspired by
approaches successfully used in SAT. Nevertheless, state-of-the-art solvers support certification to a limited extent
only.
In this talk, an overview is given on the state of the art of certified QBF solving and the challenges that need to be
addressed to obtain a fully operational certification workflow.

Monika Seisenberger
Certifying RUP proofs in the context of Railway Verification
We report on two recent advances we made in the context of applying SMT solving in the area of Railway Verification
using Z3.
The first concerns a certified RUP checker that has been extracted using the Theorem Prover Rocq. We formalised
the RUPchecker in Rocq, provided a soundness proof and extracted the checker from it. The procedure also allows to
produce the corresponding Unitresolution proof, but to do so is not required for the correctness of the checked result.
The second application demonstrates the formalisation of graph theory to be applied to a setting in geographic data
verification. The construction of such a custom theory is possible with the recent introduction of the user propagator
interface in the Z3 solver.
This is joint work with Harry Bryant, Alec Critten, Andrew Lawrence, and Anton Setzer.

Geoff Sutcliffe
Proof Verification with GDV and LambdaPi - It’s a Matter of Trust
Automated Theorem Proving (ATP) is concerned with the development and use of software that automates sound
reasoning. An ATP system can be required to output a proof that serves as a certificate for the systems claim. To
ensure that a proof is correct, verification can be required. If the verifier outputs evidence in a form that can be
independently checked, that evidence serves as a certificate for the verifiers claim. The sequence of finding a proof,
verifying the proof, and certifying the verification, builds an increasing level of trust in the system. This talk traces
one such path for TPTP format proofs generated by ATP systems, via the GDV derivation verifier, and ending at the
LambdaPi checker.

Stefan Szeider
Certifying Dynamic Symmetry Breaking in SAT and QBF
SAT Modulo Symmetries (SMS) performs dynamic symmetry breaking for graph generation by detecting and excluding
non-canonical graphs during CDCL search. In this talk, I will focus on the certification mechanisms that ensure the
correctness and completeness of this approach across different settings.
We will consider three types of certificates: (1) nc-certificates (non-canonicity certificates), which are permutations
proving that a partially defined graph cannot be extended to a lexicographically minimal solution; (2) DRAT proofs
where the symmetry-breaking clauses learned via the minimality check are added as axioms to the proof, with these
axioms themselves certified by their corresponding nc-certificates; and (3) uniform proofs for the QBF setting, where



Dagstuhl Workshop 25231 Certifying Algorithms for Automated Reasoning

SMS handles quantified graph search problems with formal verification through LDQ-resolution.
These certification mechanisms provide mathematical guarantees for the correctness of SMS and enable independent
verification of results in challenging combinatorial problems, from confirming the Murty-Simon conjecture to computing
Ramsey graphs with formal proofs.
Joint work with Mikolas Janota, Markus Kirchweger, and Tomas Peitl.

Christoph Weidenbach
Certification in SCL
Clause Learning vom Simple models (SCL) is an approach to automated reasoning that generates only non-redundant
clauses. For propositional logic it is very similar to CDCL. For first-order logic (FOL, with or without theories)
it deduces non-redundant clauses from a ground (partial) model assumption built by propagation and decisions.
Propagation in FOL is infinite and even for logics having the final model property worst case exponential. So straight
forward propagation based certification does not work. On the other hand learned clauses can be the result of many
resolution steps, similar to CDCL. So resolution based certification does not work either.


