Dagstuhl Seminar 24472
Regular Expressions: Matching and Indexing
Program

Regular expressions and finite automata lie at the foundations of Computer Science and have been
used since the sixties in basic problems like compiler design. The key algorithmic challenge is regular
expression matching, that is, efficiently identifying words of a regular language within a sequence.

Over the years, there have been numerous algorithmic advances around the topic, while at the same
time, their applications have spread over too many different areas like information retrieval, databases,
bioinformatics, security, and others, which not only make use of standard results but also pose new and
challenging variants of the regular expression matching problem. The use of regular expressions has
made its way even into current standards like SQL:2016 and SPARQL. Bringing together researchers
from core stringology and relevant application areas will benefit both sides, giving the opportunity to
exchange novel problems and solutions of theoretical and practical nature.

The seminar aims to bring together researchers from various research directions within algorithmic
aspects of regular expressions and finite automata. Furthermore, the seminar will inspire the exchange
of theoretical and practical results. Our aims are to identify practically relevant restrictions and ex-
tensions of regular expression matching, as well as variants that work on graphs rather than sequences,
and propose matching and indexing algorithms to handle those, together with related impossibility
results.

1 Program

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
7:30 BREAKFAST BREAKFAST BREAKFAST BREAKFAST BREAKFAST
9:00

INTRO SHORT 9 + 10
9:30 SHORT3+4 +5 SHORT6+7 +8
10:00 OVERVIEW 4 +5 + 6 coffee
10:30 (+ coffee) coffee coffee
OVERVIEW 1 + 2 WORK
11:00 (+ coffee)
WORK WORK
11:30 Roundup
12:15 LUNCH LUNCH LUNCH LUNCH LUNCH
14:00 OVERVIEW 3 + Working groups startup
14:30 Introduction to working WORK
15:00 groups WORK
15:30 CAKE CAKE HIKE/ CAKE
16:00 EXCURSION
WORK
16:30 WORK WORK
16:45
SHORT 1 +2 o o

17:15 Report working groups Report working groups
18:00 DINNER DINNER DINNER DINNER

2 Titles and abstracts

Overview talks: 40 minutes + questions. Short talks: 20 minutes + questions.
OVERVIEW 1. Philip Bille, Algoritmic techniques for regexp matching
OVERVIEW 2. Gonzalo Navarro, Bit-parallel sequential search for regular expressions

OVERVIEW 3. Wim Martens, Regular Expressions in Information Extraction and Graph
Databases I will give an overview to the use of regular expressions in two areas in databases:
information extraction and graph databases. In information extraction, regular expressions play a
central role in the document spanner framework. This framework aims at transforming text into a
relation of spans, i.e., intervals of start and end positions in the text. Within the spanner framework,
the class of regular spanners is particularly interesting, since it is based on regular expressions with
capture variables. I will also briefly touch upon frequent sequence mining. In graph databases, regular
expressions have been interesting since the beginning, since they form the foundation of regular path
queries, which are the quintessential feature of graph database query languages. Recent developments
in graph query languages, among which the development of Cypher and the standardization of GQL
and SQL/PGQ, motivate new ways of evaluating regular path queries in practice, which raises many
new research questions.

OVERVIEW 4. Pawel Gawrychowski, Regular language membership in small space
OVERVIEW 5. Moshe Lewenstein, Text Indexing in the context of Regular Expressions

OVERVIEW 6. Nicola Prezza, From text indexing to regular language indexing Since
the invention of suffix sorting (in particular, of suffix trees) in the 70s, the problem of indexed pattern
matching has been heavily studied in the literature. This problem has a natural language-theoretic
interpretation: given a string S, build a (linear-space) data structure answering membership queries
in the substring closure of S. This interpretation was recently made more interesting by several works
showing that suffix sorting can be naturally extended to some nonlinear structures, notably labeled
trees and de Bruijn graphs. This line of work culminated in the invention of Wheeler automata, a class
of NFAs admitting efficient and elegant solutions to a large number of hard problems on automata
(including membership). In this talk, I will first give an introduction to the rich theory of Wheeler
automata and Wheeler languages. I will then show how these ideas can be generalized to arbitrary
NFAs, comparing this solution to other existing parameterized approaches for matching strings on
regular languages.

SHORT 1. Cristian Riveros, REmatch: theory and practice for evaluating regex and
finding all matches

SHORT 2. Dominik D. Freydenberger, Treating Regex as Database Queries Most modern
implementations of regular expressions have back-references, which express repetitions of submatches.
These allow the definition of non-regular languages, like the copy language ww. The price for this gain
in expressive power is that matching becomes NP-hard.

In this talk, I present a relational algebra on strings that allows us to adapt techniques from
database theory to matching of regular expressions with back-references. It also provides us with a
framework to combine these with parsing techniques.

SHORT 3. Yasuhiko Minamide, Complexity Analysis of Regular Expression Matching
Based on Backtracking Until recently, regular expression matching has mostly been implemented
using backtracking, which led to a denial-of-service vulnerability known as ReDoS. In ReDoS, matching
does not complete in linear time and can take an excessive amount of time. In this talk, we will
review previous works that detect such problematic regular expressions through ambiguity analysis of
nondeterministic automata and growth rate analysis of string-to-tree transducers. For a given regular
expression, it is possible to precisely determine the time complexity (order) of its matching with respect
to the length of the input string.

SHORT 4. Konstantinos Mamouras, Efficient Matching of Regular Expressions with
Lookaround Assertions Regular expressions can be extended with lookaround assertions, which
are subdivided into lookahead and lookbehind assertions. These constructs are used to refine when a
match for a pattern occurs in the input text based on the surrounding context. Current implementa-
tion techniques for lookaround involve backtracking search, which can give rise to running time that is
super-linear in the length of input text. In this talk, we first present a formal mathematical semantics
for lookaround, which complements the commonly used operational understanding of lookaround in
terms of a backtracking implementation. This formal semantics allows us to establish several equa-
tional properties for simplifying lookaround assertions. Additionally, we propose a new algorithm for
matching regular expressions with lookaround that has time complexity O(m - n), where m is the
size of the regular expression and n is the length of the input text. The algorithm works by evaluat-
ing lookaround assertions in a bottom-up manner. It makes use of a new notion of nondeterministic
finite automata (NFAs), which we call oracle-NFAs. These automata are augmented with epsilon-
transitions that are guarded by oracle queries that provide the truth values of lookaround assertions
at every position in the text. We provide an implementation of our algorithm that incorporates three
performance optimizations for reducing the work performed and memory used. We present an exper-
imental comparison against PCRE and Java’s regex library, which are state-of-the-art regex engines
that support lookaround assertions. Our experimental results show that, in contrast to PCRE and
Java, our implementation does not suffer from super-linear running time and is several times faster.

SHORT 5. Markus Schmid, Subsequence Expressions with Gap Constraints A subse-
quence expression is a regular expression of the form p = A*x1A*xA* ... A*x,, A*, where A is an
alphabet and z; € A. Matching p to a string w means to search w for the subsequence x1xs ... 2. A
match can be formalised as an embedding e : |p| — |w]|, which then, for every 1 <i < j < |p|, induces
an (4, j)-gap, i.e., the substring of w that occurrs strictly between wle(i)] and wle(j)]. Gap constraints
are constraints for the gaps induced by an embedding, e.g., “the (7, j)-gap should be no longer than
77, “the (4, j)-gap should not contain the symbol ¢”, etc.

We investigate the problem of matching a subsequence expression to a string under the presence of
gap constraints, where the gap constraints are given as regular languages. Our results cover hardness
results as well as polynomial upper bounds and conditional lower bounds.

SHORT 6. Gonzalo Navarro, Evaluating Regular Path Queries on Compressed Adjacency
Matrices

SHORT 7. Adrian Gémez-Brandén, Optimizing RPQs over a Compact Graph Repre-
sentation We propose techniques to evaluate regular path queries (RPQs) over labeled graphs (e.g.,
RDF). We apply a bit-parallel simulation of a Glushkov automaton representing the query over a Ring:
a compact wavelet-tree-based index of the graph. To the best of our knowledge, our approach is the
first to evaluate RPQs over a compact representation of such graphs, where we show the key advantages
of using Glushkov automata in this setting. We introduce various optimizations, such as the ability to
process several automaton states and graph nodes/labels simultaneously, and to accurately estimate

relevant selectivities. Experiments show that our approach uses 3-5x less space, and is over 5x faster,
on average, than the next best state-of-the-art system for evaluating RPQs.

SHORT 8. Roberto Grossi, McDag: An Index for Maximal common subsequences Max-
imal Common Subsequences (MCSs)—the inclusion-maximal sequences of non-contiguous symbols
shared by strings—are a natural extension of known methods like Longest Common Substrings but
have only recently gained attention. This talk presents McDag, an efficient graph-based tool to index
MCSs on real genomic data, showing it can handle sequence pairs over 10,000 base pairs in minutes
with minimal extra storage.

Joint work with Giovanni Buzzega, Alessio Conte and Giulia Punzi

SHORT 9. Manuel Ariel Caceres Reyes, Parameterized linear-time algorithms for String
Matching to DAGs

SHORT 10. James C Davis, Regular Expression Denial of Service: Past, Present, and
Future

