
Monday
07:30-09:00 breakfast
09:00-10:00 introductions
10:00-10:30 coffee
10:30-11:10 Xavier Leroy Why compiler correctness says so little about security properties
11:10-12:10 Deepak Garg What is secure compilation? A property-centric view
12:15-14:00 lunch
14:00-15:00 Peter Sewell Secure Compilation – understanding the endpoints?
15:00-15:30 David Chisnall Teaching a production compiler that integers are not pointers
15:30-16:00 Magnus Myreen Is the verified CakeML compiler secure?
16:00-16:30 cake
16:30-18:00 Lead: Catalin Hritcu Discussion: Secure Compilation Goals and Attacker Models

Tuesday
07:30-09:00 breakfast
09:00-10:00 Amal Ahmed Compositional compiler correctness and secure compilation:

Where we are and where we want to be.
10:00-10:30 coffee
10:30-10:50 David Chisnall Preserving high-level invariants in the presence of low-level code
10:50-11:30 Dominique Devriese Capability machines as a target for secure compilation
11:30-12:10 Akram El-Korashy A secure compiler from C to CHERI
12:15-13:30 lunch
13:30-16:00 hike around Dagstuhl
16:00-16:30 cake
16:30-18:00 Working in groups (LLVM, Spectre, etc)

Wednesday
07:30-09:00 breakfast
09:00-09:30 Steve Zdancewic Call-by-Push-Value and Reasoning about Low-Level IRs
09:30-09:50 Christine Rizkallah A Formal Equational Theory for Call-By-Push-Value
09:50-10:10 Chris Hawblitzel A Spectre haunts our secure compilers
10:10-10:40 coffee
10:40-11:10 Deian Stefan Constant-time crypto programming with FaCT
11:10-11:50 Daniel Patterson Linking Types: Bringing Fully Abstract Compilers and Flexible Linking Together
11:50-12:10 Nick Benton Thoughts on preserving abstractions
12:15-14:00 lunch
14:00-14:40 Pramod Bhatotia Memory safety for Shielded Execution
14:40-15:10 Santosh Nagarakatte Compiler Optimizations with Retrofitting Transformations:

Is there a Semantic Mismatch?
15:10-15:40 John Criswell Virtual Instruction Set Computing with Secure Virtual Architecture
15:40-16:00 Max New Specifications for Dynamic Enforcement of Relational Program Properties
16:00-16:30 cake
16:30-18:00 Lead: Frank Piessens Discussion: Effective Enforcement Mechanisms for Secure Compilation

Thursday
07:30-09:00 breakfast
09:00-09:30 Derek Dreyer Defining Undefined Behavior in Rust
09:30-09:35 Dave Naumann Relational Logic for Fine-grained Security Policy and Translation Validation

09:35-09:40 Frédéric Besson CompCertSFI: Formally Veried Software Fault Isolation
09:40-09:45 Zoe Paraskevopoulou Closure Conversion is Safe-for-Space
09:45-09:50 Limin Jia Taming I/O in Intermittent Computing
10:20-10:50 coffee
10:50-11:30 Catalin Hritcu Formally Secure Compilation of Unsafe Low-level Components
11:30-12:00 Andrew Tolmach C-level tag-based security monitors
12:10-12:15 Group Photo
12:15-14:00 lunch
14:00-14:20 Chung-Kil Hur Taming Undefined Behavior in LLVM
14:20-15:00 Toby Murray Verified Compilation of Noninterference for Shared-Memory Concurrent

Programs
15:00-15:30 Stefan Brunthaler Software Diversity vs. Side Channels
15:30-16:00 Kedar Namjoshi Plugging Leaks Introduced by Compiler Optimizations
16:00-16:30 cake
16:30-18:00 Lead: Amal Ahmed Discussion: Formal verification and proof techniques

Friday
07:30-09:00 breakfast
09:00-09:30 Stephanie Weirich Verifying the Glasgow Haskell Compiler Core language
09:30-09:50 Gabriele Keller Data Refinement for Cogent
09:50-10:20 Frédéric Besson Preservation of safe erasure as an information flow property
10:20-10:50 coffee
10:50-11:10 Tamara Rezk A project on secure compilation in the context of the IoT
11:10-11:30 Cédric Fournet Building Secure SGX Enclaves using F*, C/C++ and X64
11:30-11:50 Vincent Laporte Secure compilation of side-channel countermeasures:

the case of cryptographic “constant-time”
12:15-14:00 lunch

Participant name Title Abstract (can be informal) Collaborators (especially if also attending) Duration

Akram El-Korashy
A secure compiler from C to
CHERI

Capability machines offer architectural support for fine-grained
memory separation and controlled sharing. In this in-progress work,
we leverage this support to compile a high-level data isolation
primitive fully abstractly. We start from a safe subset of C extended
with an abstraction for modules that may have private state. The
language semantics prevent a module from accessing an element of
another module's private state, unless it has been shared explicitly. We
then describe a compiler from this language to CHERI, a modern
capability machine. In ongoing work, we are proving that the compiler
is fully abstract, i.e., it preserves and reflects observational
equivalence and, hence, implements the source module abstraction
securely.

Stelios Tsampas, Marco Patrignani, Dominique
Devriese, Frank Piessens, Deepak Garg 20 + 20

Amal Ahmed

Compositional compiler
correctness and secure
compilation:
Where we are and where we
want to be.

In this talk, I’ll start with a brief but insightful survey of recent compositional compiler
correctness results. I’ll give a high-level perspective on what is good and bad about each of the
existing compositional compiler correctness results and how their formalisms influence the
required verification effort. I’ll explain why _none_ of the compositional compiler correctness
results to date are where we want to be!

Then I’ll present a generic compositional compiler correctness (CCC) theorem that abstracts
away from existing formalisms. CCC gives us insight on what is required for modular
verification of multi-pass compilers.

I will end with an insight for those working on secure compilation results that require “weaker"
protection of compiled components than fully abstraction compilation: when it comes to proving
such compilers correct, truly modular verification of multi-pass compilers seems impossible. Daniel Patterson

40 + 20 tutorial (very few
slots)

Andrew Tolmach
C-level tag-based security
monitors.

Recent work on security "micropolicies" uses hardware-level metadata tags to monitor
individual machine operations. This talk will sketch preliminary ideas for how to raise the
definition of tag-based policies to the level of C code. C-level polices should be useful both to
express high-level properties that are tedious or impossible to specify at machine level (e.g.
information flow control or compartmentalization) and to enforce particular variants of C
semantics (e.g. differing flavors of memory safety based on differing pointer aliasing rules). C-
level policies can be (verifiably) compiled to machine-level policies to be enforced by existing
(prototype) hardware.

Catalin Hritcu, Benjamin Pierce, Sean Anderson
(student) 15 + 15

Catalin Hritcu

Formally Secure Compilation
of Unsafe Low-level
Components

We propose a new formal criterion for secure compilation, giving
end-to-end security guarantees for software components written
in unsafe, low-level languages with C-style undefined behavior. Our
criterion is the first to model *dynamic* compromise in a system
of mutually distrustful components with clearly specified privileges. Each
component is protected from all the others---in particular, from
components that have encountered undefined behavior and become
compromised. Each component receives secure compilation guarantees up
to the point when it becomes compromised, after which an attacker can
take complete control over the component and use its privileges
to attack the remaining uncompromised components.

Andrew Tolmach (attending), Guglielmo Fachini,
Marco Stronati, Arthur Azevedo de Amorim, Ana Nora
Evans, Carmine Abate, Roberto Blanco (attending),
Théo Laurent, Benjamin C. Pierce. 20 + 20

Cédric Fournet
Building Secure SGX Enclaves
using F*, C/C++ and X64

Intel SGX offers hardware mechanisms to isolate code and data running within enclaves from
the rest of the platform. This enables security verification on a relatively small software TCB,
but the task still involves complex low-level code.

Relying on the Everest verification toolchain, we use F* for developing specifications, code, and
proofs; and then safely compile F* code to standalone C code. However, this does not account
for all code running within the enclave, which also includes trusted C and assembly code for
bootstrapping and for core libraries. Besides, we cannot expect all enclave applications to be
rewritten in F*, so we also compile legacy C++ defensively, using variants of /guard that
dynamically enforce their safety at runtime.

To reason about enclave security, we thus compose different sorts of code and verification
styles, from fine-grained statically-verified F* to dynamically-monitored C++ and custom SGX
instructions.

This involves two related program semantics: most of the verification is conducted within F*
using the target semantics of Kremlin—a fragment of C with a structured memory—whereas
SGX features and dynamic checks embedded by defensive C++ compilers require lower-level
X64 code, for which we use the verified assembly language for Everest (VALE) and its
embedding in F*. Anitha Gollamudi 10 + 10

Chris Hawblitzel
A Spectre haunts our secure
compilers

Hardware is full of side channels that thwart our attempts to execute software securely. The
recent Spectre vulnerability is one of the most worrisome. What is Spectre, and what
mitigations against it have been applied to our hardware, applications, and compilers? How
can we formally reason about information leakage in the presence of speculation and memory
side channels? Given the tradeoffs between performance and side channel freedom, what
guarantees would we like hardware to provide to software? 10 + 10

Christine Rizkallah
A Formal Equational Theory for
Call-By-Push-Value

Establishing that two programs are contextually equivalent is hard, yet essential for reasoning
about semantics preserving program transformations such as compiler optimizations. The
Vellvm project aims to use Coq to formalize and reason about LLVM program transformations
and as part of this project we are using a variant of Levy’s call-by-push-value language. I will
talk about how we establish the soundness of an equational theory for call-by-push-value and
about how we used our equational theory to significantly simplify the verification of classic
optimizations. Steve Zdancewic 10 + 10

Chung-Kil Hur Taming Undefined Behavior in LLVM

A central concern for an optimizing compiler is the design of its intermediate representation (IR)
for code. The IR should make it easy to perform transformations, and should also afford
efficient and precise static analysis.

In this paper we study an aspect of IR design that has received little attention: the role of
undefined behavior. The IR for every optimizing compiler we have looked at, including GCC,
LLVM, Intel’s, and Microsoft’s, supports one or more forms of undefined behavior (UB), not only
to reflect the semantics of UB-heavy programming languages such as C and C++, but also to
model inherently unsafe low-level operations such as memory stores and to avoid over-
constraining IR semantics to the point that desirable transformations become illegal. The
current semantics of LLVM’s IR fails to justify some cases of loop unswitching, global value
numbering, and other important “textbook” optimizations, causing long-standing bugs.

We present solutions to the problems we have identified in LLVM’s IR and show that most
optimizations currently in LLVM remain sound, and that some desirable new transformations
become permissible. Our solutions do not degrade compile time or performance of generated
code. 10 + 10

Daniel Patterson

Linking Types: Bringing Fully
Abstract Compilers and
Flexible Linking Together

Fully abstract compilers protect components from target-level attackers by
ensuring that any observations or influence that a target attacker could have
can also be done by a source-level attacker. This means that programmers need
only reason about security properties in their own language, not additional
interactions that may happen in lower level intermediate or target languages.
While this is obviously an extremely valuable property for secure compilers, it
rules out linking with target code that has features or restrictions that can
not be represented in the source language that is being compiled.

While traditionally fully abstract compilation and flexible linking have been
thought to be at odds, I'll present a novel idea called Linking Types that
allows them to coexist. Linking Types enable a programmer to opt in to local
violations of full abstraction that she needs in order to link with particular
code without giving up the property globally. This fine-grained mechanism
enables flexible interoperation with low-level features while preserving the
high-level reasoning principles that fully abstract compilation offers.

The talk will give some brief background to the ideas, show how they play out in
examples, and open a broader discussion as to how this idea could influence
secure compilers and language design. Amal Ahmed 20 + 20

Dave Naumann

Relational Logic for Fine-
grained Security Policy and
Translation Validation

Relational Hoare logics facilitate reasoning about information-flow properties of programs as
well as relations between programs such as observational equivalence. Such logics might be
used to specify sensitive information at source level and to specify what is considered
observable at source and target levels, in order to define security-preserving compilation and
support translation validation. In this 5-10 min talk I could sketch these ideas and get feedback
on how they could be investigated further. 5 minutes

David Chisnall

Preserving high-level
invariants in the presence of
low-level code

Most complex programs contain a mixture of different language, but the guarantees available in
common implementations are those of the lowest-level language. A typical Java
implementation includes well over a million lines of C/C++ code with no constraints on its
abilities and the same is true for most other high-level languages.

In the CHERI JNI work presented at ASPLOS last year, we demonstrated one possible way of
allowing untrusted native code (including unverified assembly code) to exist in the same
process as Java code, with high performance and preserving all of the invariants on which the
Java security model is built.

Brooks Davis, Khilan Gudka, David Brazdil, Alexandre
Joannouand Jonathan Woodruff, A. Theodore
Markettos, J. Edward Maste, Robert Norton, Stacey
Son, Michael Roe, Simon W. Moore, Peter G.
Neumann, Ben Laurie and Robert N. M. Watson 10 + 10

Participant name Title Abstract (can be informal) Collaborators (especially if also attending) Duration

David Chisnall

Teaching a production
compiler that integers are not
pointers

Over the past six years, we have created taught the clang front end for [Objective-]C/C++, the
LLVM optimisation pipeline, and the MIPS back end, to understand that pointers are a distinct
type from integers (though memory may contain either). With the CHERI extensions applied to
MIPS, we are able to preserve the distinction between pointers and integers all of the way from
a source language, which supports features such as untagged unions and untyped memory, all
of the way through the compilation pipeline to hardware that can preserve this distinction at run
time.

We support a single-provenance semantics for pointers and can discuss the changes required
to the compiler and our design decisions for concrete choices allowed within the C/C++ abstract
machine that maintain compatibility with large corpora of real-world code while preserving
memory safety. Khilan Gudka, Alex Richardson, Peter Sewell 15 + 15

Deepak Garg What is secure compilation?

What does it mean that a compiler chain is secure? How does
one define such secure compilation formally? And to what attacker
model does it correspond? In this talk I will argue that a secure
compilation chain should preserve some well-specified class of
security properties of source programs even against adversarial
low-level contexts. Particularly interesting classes include safety
properties, hyperproperties (e.g. non-interference), and relational
hyperproperties (e.g. observational equivalence).

Catalin Hritcu (attending), Marco Patrignani (also
attending), Carmine Abate, Jérémy Thibault

40 + 20 tutorial (very few
slots)

Deian Stefan
Constant-time crypto
programming with FaCT

Implementing cryptographic algorithms that do not inadvertently leak secret information is
notoriously difficult. Today's general-purpose programming languages and compilers do not
account for data sensitivity; consequently, most real-world crypto code is written in a subset of
C intended to predictably run in constant time. This C subset, however, forgoes structured
programming as we know it -- crypto developers, today, do not have the luxury of if-statements,
efficient looping constructs, or procedural abstractions when handling sensitive data.
Unsurprisingly, even high-profile libraries, such as OpenSSL, have repeatedly suffered from
bugs in such code.

In this talk, I will describe FaCT, a new domain-specific language that addresses the challenge
of writing constant-time crypto code. With FaCT, developers write crypto code using standard,
high-level language constructs; FaCT, in turn, compiles such high-level code into constant-time
assembly. FaCT is not a standalone language. Rather, we designed FaCT to be embedded
into existing, large projects and language. In this talk, I will describe how we integrated FaCT in
several such projects (OpenSSL, libsodium, and mbedtls) and languages (C, Python, and
Haskell). 15 + 15

Derek Dreyer
Defining Undefined Behavior in
Rust

In the RustBelt project, we have been building foundations for understanding the safety claims
of the Rust language and for evolving the language safely. In so doing, we have thus far
assumed a memory model in which the only forms of undefined behavior are data races and
memory safety violations. However, this is too simplistic. The Rust developers would like to
support more aggressive compiler optimizations that exploit non-aliasing assumptions derived
from Rust's reference types, but in order for such optimizations to be sound, undefined
behavior must be expanded to include unsafe code that violates such non-aliasing
assumptions. In this talk, I will report on several avenues currently being explored for defining
undefined behavior in Rust.

I can give either a 10-minute talk or a 15-minute talk, depending on how much detail people
want to hear. This is very much work in progress. Ralf Jung 15 + 15

Dominique Devriese
Capability machines as a target
for secure compilation

A quick introduction to capability machines, and an overview of ideas about how different
properties can be enforced using different extensions of capability machines

Thomas Van Strydonck (not attending), Frank
Piessens, Lau Skorstengaard (not attending), Lars
Birkedal, Akram El-Korashy, Stelios Tsampas (not
attending), Marco Patrignani, Deepak Garg 20 + 20

Frédéric Besson
Preservation of safe erasure as
an information flow property

Secure coding requires erasing secrets to limit the possibility for an attacker to probe the
content of memory. At source level, erasure is typically performed by a memset (secret,0). Yet,
as secret is dead, compiler optimisations may remove this piece of code and therefore break
the security.

In the talk, I will test on the audience a semantics definition of (preservation) of safe erasure
phrased in terms of quantitative information flow. I will then sketch how typical compiler
optimisations (DSE, register allocation) need to be modified to preserve this property. 15 + 15

Frédéric Besson CompCertSFI Formally Veried Software Fault Isolation 5 minutes

Gabriele Keller Data Refinement for Cogent

COGENT allows low-level operating system components to be modelled as pure mathematical
functions operating on algebraic data types, suitable for verification in an interactive theorem
prover. Further-more, it can compile these models into imperative C programs, and provide a
proof that this compilation is a refinement of the functional model. Currently, however, there is
still a gap between the C data structures used in the operating system, and the algebraic data
types used by COGENT, which force the programmer to write a large amount of boilerplate
marshalling code to connect the two.

In this talk, I'll outline our current work on adding a data description component to the
framework, which will allow COGENT to be flexible in how it represents its algebraic data types,
enabling models that operate on standard algebraic data types to be compiled into C programs
that manipulate C data structures directly. Once fully realised, this extension will enable more
code to be automatically verified by COGENT, smoother interoperability with C, and
substantially improved performance of the generated code. Christine Rizkallah 10+10

John Criswell

Virtual Instruction Set
Computing with Secure Virtual
Architecture

This talk will present Secure Virtual Architecture (SVA): a virtual instruction set computing
infrastructure which we have used to enforce security policies on both application and operating
system kernel code. I will present how we have used SVA to enforce traditional policies like
memory safety and control flow integrity as well as newer policies such as newer policies that
mitigate side-channel attacks and Spectre/Meltdown attacks launched by compromised
operating system kernels. I hope to solicit feedback on how to employ secure compilation
techniques into SVA to further reduce its (already small) trusted computing base size and to
discuss the use of secure compilation techniques on operating system kernel code. 15 + 15

Kedar Namjoshi
Plugging Leaks Introduced by
Compiler Optimizations

Some compiler optimizations (e.g., dead store removal, or SSA conversion) can introduce new
information leaks as they transform a program. I will talk about sound -- but necessarily
approximate -- methods to produce leak-free forms of these optimizations. Not all optimizations
introduce leaks; I will show how one can verify that an implementation of a transformation is
leak-free by checking additional properties of a refinement relation (a "witness") that is
produced originally to justify correctness.

There are several open questions (e.g., how to establish preservation of security properties
other than information leakage?) which I hope to have the chance to discuss during the talk and
in the seminar. 15 + 15

Limin Jia
Taming I/O in Intermittent
Computing

Energy harvesting enables novel devices and applications without batteries. However,
intermittent operation under energy harvesting poses new challenges to preserving program
semantics under power failures. I will first discuss uniques challenges that existing check-
pointing mechanisms for intermittent computing face in the presence of I/O operations. Then, I
will talk about our ongoing work on developing a static analysis tool for automatically identifying
bugs caused by I/O operations, methods for fixing such bugs, and formal models for intermittent
computing. 5 minutes

Magnus Myreen
Is the verified CakeML
compiler secure?

I propose to (1) present the CakeML compiler at a high-level, then (2)
zoom in on the exact details of the compiler correctness theorem, but
leave plenty of time for (3) a discussion on whether the CakeML
compiler is secure or not. The CakeML compiler starts from a safe
language (unsafe out-of-bounds accesses are not possible) and compiles it
to concrete machine code (x86, ARM, RISC-V etc.) with a semantics
where the OS and other programs are allowed to interrupt the CakeML
machine code. The CakeML compiler is probably safer than unverified
compilers for ML, but is it more secure? In the discussion part of
my talk, I'll talk about different attacker models and security
questions regarding the target semantics which is at the level of
machine code. I would ideally like to talk for 10-15 minutes and have
15-20 minutes for discussion.

Scott Owens (attending), Ramana Kumar, Michael
Norrish, Yong Kiam Tan, Anthony Fox 15 + 15

Participant name Title Abstract (can be informal) Collaborators (especially if also attending) Duration

Max New

Specifications for Dynamic
Enforcement of Relational
Program Properties

Many security and reliability properties are phrased in terms of relations on programs, e.g.,
noninterference and representation independence. While all source-level programs respect
these relational properties due to syntactic restrictions such as linearity or type checking, when
compiling securely to low-level programs, we need to interpose on the boundary between
compiled code and low-level attackers to maintain our high-level security properties.

In this talk we present a simple specification for the interposition functions between compiled
code and low-level attackers.
The basic idea is to first provide a *refinement relation* between high level and low level
behaviors.
Some simple properties must be satisfied to ensure that the refinement relation is compatible
with the relational properties of interest.
Then functions that enforce high-level interfaces on low-level attackers and dually protect
compiled code from low-level attackers can be given two dual specifications with respect to the
refinement relation.
An enforcement function is sound if its output refines its input, and *optimal* if it has the most
behavior of any refinement of the input.
Dually, a protection function is sound if its output is refined by its input, and *optimal* if it has
the least behavior of any refinement of the input.
Finally, to get security/full abstraction we need the protection function to be *injective*, which is
here equivalent to saying that `enforce o protect = id`.

This fairly simple spec is the core of "galois connection"-based approaches to security, but we
argue that by focusing on the refinement relation first, the galois connection properties become
more intuitive. Furthermore, since the actual implementation of enforce and protect can be quite
complex, it is useful to specify them first in terms of a simple refinement relation. Amal Ahmed 10 + 10

Nick Benton Thoughts on preserving
abstractions 10 + 10

Peter Sewell
Secure Compilation –
understanding the endpoints?

Short update for several related projects under our REMS umbrella focusing on the bits most
relevant to secure compilation:
a) our Sail-based work on ISA semantics, towards more-or-less complete sequential ISA specs
for ARMv8-A (derived from the ARM-internal specification), CHERI, and RISC-V, with smaller
IBM POWER and x86 fragments. We aim to produce usable Isabelle and Coq versions for
others to build on.
b) hardware concurrency semantics, mostly for ARM and RISC-V
c) proving security properties of CHERI
d) sequential C source semantics and WG14 - and its relation to CHERI C
e) WebAssembly semantics

(a) Alasdair Armstrong, Thomas Bauereiss, Brian
Campbell (Edinburgh), Shaked Flur, Kathryn E. Gray
(now Facebook), Neel Krishnaswami, Prashanth
Mundkur (SRI), Robert M. Norton, Christopher Pulte,
Alastair Reid (ARM), Ian Stark (Edinburgh), Mark
Wassell
(b) Shaked Flur, Christopher Pulte, Gil Hur (SNU),
Jean Pichon-Pharabod, Luc Maranget (INRIA),
Susmit Sarkar (St Andrews)
(c) Kyndylan Nienhuis and the CHERI team
(d) Kayvan Memarian, Victor B. F. Gomes
(e) Conrad Watt

40 + 20 tutorial (very few
slots)

Pramod Bhatotia
Memory safety for Shielded
Execution

In this talk, I will first present our work on SGXBounds on how to achieve lightweight memory
safety in the context of SGX Enclaves.
http://se.inf.tu-dresden.de/pubs/papers/sgxbounds2017.pdf

I will conclude the talk with our on-going work on Intel MPX Explained: https://intel-mpx.github.
io/ 20 + 20

Santosh Nagarakatte

Compiler Optimizations with
Retrofitting Transformations:
Is
there a Semantic Mismatch?

A retrofitting transformation modifies an input program by adding
instrumentation to monitor security properties at runtime. These
tools often transform the input program in complex ways. Compiler
optimizations can erroneously remove the instrumentation
added by a retrofitting transformation in the presence of semantic
mismatches between the assumptions of retrofitting transformations
and compiler optimizations. This talk will describe a generic strategy to ascertain that every
event of interest that is checked in the
retrofitted program is also checked after optimizations. 15 + 15

Stefan Brunthaler
Software Diversity vs. Side
Channels

The past couple of years have seen attacks becoming increasingly sophisticated, primarily due
to the discovery and incorporation of side channels. For example, Drammer, AnC, and
SPECTRE showed how predictable behavior enables modern side-channel attacks.
Based on my experience with using diversity to counter timing-based side-channel attacks (cf.
NDSS'15 paper), I have devised a couple of new diversity defenses to thwart Drammer and
substantially lessen the impact of SPECTRE attacks. n/a 15 + 15

Stephanie Weirich
Verifying the Glasgow Haskell
Compiler Core language

Verified compilers are one part of secure compilation. By developing a
compiler within the language of a proof assistant, we can rigorously show that
the semantics of the source language is preserved through compilation to the
target. However, what about our existing compilers?

In this talk, I will present our preliminary work that uses the Coq theorem
prover to reason about the implementation of the GHC Core intermediate
language. Our goal is to show that Core optimization passes are correct:
i.e. that these transformations preserve the invariants of the compiler AST
and, ultimately, the semantics of the Core language. Our work uses the
hs-to-coq tool to translate the source code of GHC from Haskell into Gallina,
the language of the Coq proof assistant, taking advantage of the similarity
between the languages. One discussion point is how much our proofs actually
apply to GHC --- what can we really prove about compilation and what
guarantees can we conclude from our work?

Joachim Breitner, Antal Spector-Zabusky, Yao Li,
Christine Rizkallah, John Wiegley 15 + 15

Steve Zdancewic

Call-by-Push-Value and
Reasoning about Low-Level
IRs

Real-world compilers use control-flow-graph-based intermediate representations.
For example, the LLVM IR consists of control-flow-graphs structured according to
the static single assignment (SSA) invariants. Such IRs are well-suited for
backend code generation and implementing analyses and optimization passes;
however, formalizing such IRs and reasoning about the correctness of those
analyses and optimizations at that level can be challenging.

In the Vellvm (Verified LLVM) project, we have been experimenting with
representing SSA control-flow-graphs using terms of Levy's call-by-push-value
(CBPV) variant of the lambda calculus. CBPV offers the benefits of a good
equational theory based on the usual notions of beta-equivalence. By relating
the operational semantics of the CBPV language to that of the SSA-control-flow
graphs, we can transport reasoning and program transformations from one level to
another, thereby allowing for very simple proofs of the correctness of many
low-level optimizations such as function inlining.

This talk will explain our on-going work in this area and conections to the LLVM
IR.

Christine Rizkallah (attending -- she will talk about a
different, but related piece of this project)
 Dmitri Garbuzov, William Mansky, and Yannick
Zakowski. 15 + 15

Tamara Rezk

A project on secure
compilation in the context of
the IoT

I will briefly present a new starting project which relies on the idea of
using secure compilation for the Internet of Things (IoT).
The talk will present new challenges in the IoT context, security risks,
and speculations on how to address them.
http://cisc.gforge.inria.fr/

Frédéric Besson, Thomas Jensen, Alan Schmitt,
Gérard Berry, Nataliia Bielova, Ilaria Castellani,
Manuel Serrano, Claude Castelluccia, Daniel Le
Métayer 10+10

Toby Murray

Verified Compilation of
Noninterference for Shared-
Memory Concurrent Programs

I propose to present our work on verified compilation of (value-dependent) noninterference for
concurrent programs. I would present the underlying theory (definitions of secure refinement)
and their instantiation in the context of a compiler from a simple While language to an idealised
RISC language. I would present the current state of the work, future plans, opportunities for
collaboration, relationship to other ongoing work on verified noninterference for concurrent
programs, etc. Christine Rizkallah 20 + 20

Xavier Leroy

Why compiler correctness
says so little about security
properties

I could talk 10-15 minutes on the basics of compiler verification and 10-15 minutes (plus
copious discussions, I'm afraid) on why a CompCert-style compiler verification says so little
about security properties and what could possibly be done about it, with preservation of
constant-time-ness as an example. 20 + 20

Zoe Paraskevopoulou
Closure Conversion is Safe-
for-Space

Compiler transformations may fail to preserve the resource consumption of compiled programs.
A notable example is closure conversion with linked closures which may introduce space leaks.
In this talk I will present a (currently ongoing) proof that closure conversion with flat closure
representation is safe-for-space, meaning that it preserves the space complexity of the
compiled program. We develop a method based on step-indexed logical relations that allows us
to conveniently reason about the resource consumption of the source and target programs, as
well as the functional correctness of the transformation. Andrew Appel 5 minutes

