Spatial Interpolants

Aws Albargouthi Josh Berdine Byron Cook Zachary Kincaid

August 2014
Dagstuhl
Seminar 14351: Decision Procedures and Abstract Interpretation



Problem

Combined heap and data reasoning for automatic verification

Examples:

>

>

scalar constraints on heap-resident data

traversing linked structures by size

storing array indices in linked
data-structures

manual reference counting

int i = nondet ();

node*x x = null;
while (i !'= 0)

node* tmp = malloc(node);
tmp->N = x;

tmp->D = 1ij

X = tmp;

i--3

while (x != null)

assert (x->D >= 0);
x = x->N;



SPLINTER from 10,000 feet
Spatial(T) interpolants
Path 7 from P

Heap prover
(spatial interpolants)

Program P

Property ¢
Data prover
(T interpolants)
P is safe w.r.t. ¢ No proof found

Path violates ~ Path violates
memory safety — property ¢

> No heap: specializes to IMPACT (McMillan'’s lazy abstraction with interpolants)
» No data: specializes to new path-based separation logic analysis



Motivation for Path Sampling

Path sampling enables
> Path-based refinement
progress guarantee by tightly correlating program exploration with refinement
precision guarantee by avoiding lossy join and widening operations
produces counter-examples for violated properties
no false alarms (diverges instead, as usual)

Yy v Vv Y

» Property-direction

» don’t try to compute strongest invariant possible
» compute one just strong enough to prove property holds
> key enabler for scalable precise reasoning in “rich” program logics

Main impediment

> (infinitely-) many paths may be analyzed before finding proof



Path Sampling

Spatial(7) interpolants

Path 7 from P

Path
sampler

Proof that 7 is safe

Heap prover
(spatial interpolants) » Follows IMPACT

Program P » Optimizations exist, but basically:

Property ¢ » Maintain set of paths and their proofs

» At each step, choose an arbitrary path

Data prover
(T interpolants) > finite path through control-flow graph

> from program entry to an assertion
> not already proved

P is safe w.r.t. o No proof found

Path violates  Path violates
memory safety  property ¢



Path Sampling: Example

assume(i != 0);
nodex tmp = ...;
tmp->N = x;
int i = nondet(); tmp->D = i;
dex x = null = s oi-- assume(i == 0 assume(x != null assert(x->D >= 0
@ no (? x = tmp; i ,Q ( )V(T\ ( )vm ( )
J J J O

1: int i = nondet ();

node* x = null;
2: while (i != 0)
node* tmp = malloc(node);

tmp->N = x;
tmp->D = 1i;

X = tmp;
i--3
3: while (x != null)
4: assert (x->D >= 0);

x = x->N;



Spatial Interpolation

» Construct Hoare-style memory safety proof
for path
Spatial(T) interpolants . Call annotations spatial path interpolants

Path « from P Heap prover > logical strength between strongest

(spatial interpolants) postconditions and weakest preconditions
Program P Path H » do not impose other conditions of Craig
a N .
Property ¢ ; interpolants

» Two-phase computation

Data prover .
(T interpolants) 1. symbolically execute path forward to
Proof that « is safe compute strongest data-free postconditions
2. relax proof via backward
P is safe w.rt. No proof found under-approximation of weakest
preconditions
Path violates  Path violates » heuristic

memory safety  property » guided by strongest postconditions along

path



Strongest Postconditions: Example

assume(i != 0);
node* tmp = ...;
tmp->N = x;
int i = nondet(); tmp->D = i;
nodex x = null m x = tmp; i-- m assume(i == 0) massume(x I= null) r—‘assert(x—>D >= 0)
Symbolic Heaps
v P true : emp 2 = null : emp true : x + [d’, null] true : x — [d', null] true : x — [d, null]

(strongest post)

exec(x->N; .= E, (3X.T: L%z [d, 7)) = BX.T:Zxz— [d,7AE/n]])

where 1 < |7 andﬂ:Z*zH[c_i,ﬁ}Fm:z



Spatial Interpolation: Example

assume(i != 0);

nodex tmp = ...;
tmp->N = x;
int i = nondet(); tmp->D = i;

nodex x = null m X = tmp; i-- m assume(i == 0) massume(x I= null) r—‘assert(x—>D >= 0)
1 > 2 2a 3 4 >
( } J J J J

true : emp 2 = null : emp true : x + [d’', null] true : x — [d', null] true : z — [d, null]

Spatial Interpolants | true: emp true : Is(z, null) true : Is(z, null) true : Is(z, null) true : x — [d',n']

Symbolic Heaps
(strongest post)




Spatial Interpolation Modulo Theories

Path 7 from P

Path
sampler

Proof that 7 is safe

Program P
Property ¢

P is safe w.r.t. ¢

Path violates
memory safety

Spatial(7) interpolants

Heap prover
(spatial interpolants)

v

Data prover
(T interpolants)

No proof found

Path violates
property ¢

» Strengthen memory safety proof of path

> add data constraints
» prove path satisfies safety property

» Generate system of Horn clause constraints

» encode data manipulation along path, and
its memory safety proof

> solve using existing techniques

» solution determines refinement
(strengthening) of memory safety proof



Symbolic Heaps
(strongest post)

Spatial Interpolants

Spatial Interpolants
Modulo Theories

Spatial Interpolation Modulo Theories: Example

assume(i != 0);

nodex tmp = ...;

B

tmp->N =

int i = nondet();

node* x = null
)

*)

x5
tmp->D = i;
X = tmp; i--

m assume(i == 0) massume(x I= null) ﬁassert(x'>D >= 0)

true : emp 2z = null : emp
true : emp true : Is(z, null)
true :emp  true:ls((Av.v > i), z, null)

2a
true : x + [d', null]
true : Is(z, null)

true : Is((Av.v = i), 2, null)

cJ

true : x +— [d', null]

true : Is(z, null)

true : Is((Av.v = 0), z, null)

)

true : x +— [d', null]

true : x> [d',n']

d' >0z [dn]



v

v

v

v

v

v

Spatial Interpolants

Bounded from below by strongest memory safety proof

Bounded from above (implicitly) by weakest memory safety proof
Without upper bound

> Interpolant/invariant computable using forward transformer and widening
» Risks widening too aggressively

> so analyses widen conservatively at the price of computing unnecessarily strong proofs
» Upper bound captures information needed to prove future execution
Without lower bound

> Interpolant/invariant computable using backward transformer (and lower widening)
» Backward transformers in shape analysis explode

> due to issues such as not knowing the aliasing relationship in the pre-state
» Lower bound captures such information, containing the explosion
Price of both bounds is operating over full paths from entry to error
Heuristics for weakening at each point along the path have information about

> one execution’s past and future when analyzing full paths
» many past executions in a forwards iterative analysis via join or widening



Bounded Abduction

Definition (Bounded abduction)
A solution to the bounded abduction problem LE (3X.Mx[])FR
is a formula A such that LEE3X. MxA)ER.

Compared to bi-abduction
» Bounded abduction solution: 1 formula constrained from above and below
» Bi-abduction solution: 2 formulas, one constrained from above and one from below
» Bounded abduction: fixed lower and upper bounds give considerable guidance to solvers

» Bi-abduction: bounds are part of the solution



Solving Bounded Abduction

LEEX. Mx[)FR

Sound but incomplete algorithm
1. Find a coloring of L
> each heaplet in L is either red or blue
> red heaplets satisfy M, blue heaplets are left over
» computed by recursion on proof of L+ (3X. M x true)
2. Find a colored strengthening T1: [M']" * [A]® of R
> entails R
> is colored such that
> red heaplets correspond to red heaplets of L
> blue heaplets correspond to blue heaplets of L
» computed by recursion on proof of L - R using coloring of L
3. Check TT': M * A = R, where TI’ is the strongest pure formula implied by L
» necessary because M may be weaker than M’

» if entailment check fails, then algorithm fails
» if entailment check succeeds, then IT” : A is a solution
» T1” is all equalities and disequalities used in proof of TT' : M x A |= R



Bounded Abduction: Example

Example

T [a,ylxy = [b,nulll Flis(z,y) « [ 1+ (32. = [a, 2] x Is(y, null))
L R

1. Color L: [z + [a, y]]" * [y — [b, null]]® using proof of L I Is(x, y) * true
2. Color R: (3z. [z — [a, 2]]" * [Is(y, null)]°) using proof of L+ R

3. Prove
z#Enull Ny #null ANz #£ y:ls(z,y) *Is(y,null) = R

strongest pure consequence of L

This proof succeeds, and uses pure assertion z # y.

4. Return solution z # y : Is(y, null)



Computing Spatial Interpolants
Given command c and Sep formulas S and I’ such that exec(c, S) - I’
Compute a Sep formula itp(.S, c,I’) such that S =T and {I} c {I'} is valid

itp(S,x->N; .= E,I') = (3d,Z. Axz — [@, Z])

where A satisfies
exec(c,S)F (3@, Z. z — [@,Z[E/z]] « [A) I’

Example

Suppose S =t~ [4,y,null] x z — [2, null, null] c=1t->Ng = x I =bt(t)
Compute exec(c,S) =t~ [4,z,null] x z — [2, null, null]

Solve exec(c,S)F (Ja,z. t = la,z,z] x[]) F I’

One solution is bt(z) * bt(z;), yielding

itp(S,c,I') = (3a, 9, z1. t — [a, 29, z1] * bt(z1) * bt(z))



Spatial Interpolation Modulo Theories

Given proof ( of {true : emp} 7t {true : true}, and a postcondition ¢
Transform ( into proof of {true: emp} 7 {} : true}

1. Traverse ¢ and build

» refined proof { where refinements may contain 2nd-order variables
» constraint system € which encodes logical dependencies between 2nd-order variables

2. Solve €

» for an assignment of data formulas to 2nd-order variables that satisfies all constraints
3. If successful, instantiate 2nd-order variables in (’

» yields valid proof of {¢true: emp} 7w {¢ : true}

Sound and Complete (per path, when heap-feasible)



Spatial Interpolation Modulo Theories: Example

Refined memory safety proof (' Constraint system C Solution o
{Ro(2) : true} Ro(1') + true Ro(1) : true

i = nondet(); x = null Ri(1') + Ro(1) Ry(1) : true
{R1(7) :Is((Aa.Ris1 (v, 1)), z,null)} Ro(i') «+ Ri(i) Ni#0N =i+1 Ry(12) : true
assume(i 1=0); ...; i—; R3(2) <+ Ra(2) N2 =0 R3(1) : true
{Ra(7) :Is((Aa.Ris2(v,2)), z,null)}  Ry(s, d’) « R3(¢) N\ Risz(d’,4) Ry(1,d"):d" >
assume(l == 0) Ris2(v,1") + Ri(t)ARs1(v,0)\1 # 0Nt =141 Rii(v,2):v =1
(Rs(1) : Is((Aa. Rz (v, 1)), 2, null)} Riea(v,3) = Ra(d) AV =i A5 £0A% =i+1 Ria(v,4):v >3
assume(x != null) Risz(v, 1) + Ra(i) A Ris2(v,2) A1 =0 Ri3(v,4):v>=0

{(3d’,y. Ra(7,d"):z+— [d',y])} d’ =0+« Ry(1,d’)

Symbolic Heaps

(strongest post) true: emp

z = null : emp

U I

true : Is(z, null)

true : x +— [d’, null]

Spatial Interpolants true : emp true : Is(z, null)

fr fr

Spatial Interpolants true : Is((A\v.v = i), 2, null)

Modulo Theories

true : emp true : Is((Av.v = i), z,null)

true : z +— [d', null]

true : Is(z, null)

true : Is((Av.v = 0),z, null)

true : z +— [d', null]

true : x — [d',n’]

d=0:z0 [dn]



Conclusions & Challenges

SPLINTER is IMHO an important step in precise and generic automatic heap/data analyses

Novel heap analysis, that specializes to a leading technique for numerical and control-sensitive
property verification

Not the last word on interface between spatial interpolation and bounded abduction
Unclear if the spatial then data phasing can be relaxed

Want better understanding of currently enumerative heuristic for spatial interpolation of
assumptions
Want better under-approximation of classical conjunction in separation logic

» or generalize everything to handle it natively

Want to revise “real” separation logic provers to generate data constraints



