An Introduction to Graph Analytics Platforms

M. Tamer Ozsu

University of Waterloo
David R. Cheriton School of Computer Science

UNIVERSITY OF

Waterloo

%

@© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

Graph Data are Very Common

Internet

M. Tamer Ozsu Dagstuhl Spring School

Graph Data are Very Common

Social
networks

. Tamer Ozsu Dagstuhl Spring School

Graph Data are Very Common

World Trade 1994
Residuals Model 1

233
i7
131

85

L o e e

ames 125 19w

Trade volumes

and
connections

B S —

T R

@© M. Tamer Ozsu

Dagstuhl Spring School (2016/03/07-09) 2 /59

Graph Data are Very Common

Biological
networks

© M. Tamer Dagstuhl Spring School (2016/03/07-09) 2 /59

Graph Data are Very Common

Linked data

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

@© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

@ Introduction — Graph Types

e Property Graph Processing
@ Classification
@ Online querying
o Offline analytics

9 Graph Analytics Computational Models
@ Vertex-Centric
@ Block-Centric
@ MapReduce-Based
© Modified MapReduce

@© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

Outline

@ Introduction — Graph Types

@© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09) 4 /59

Graph Types

Property graph

film 3418
(label, “The Passenger”)

offers_0743424425amazonOffer

02635167
(name, “United Kingdom")

(rating, 4.7) (Population, 62348447)

ook) (based-near)

film_2014
(initial_release_date, “1980-05-23")
(label, “The Shining")

actor 30013

film_2685
(label, “A Clockwork Orange")

Dagstuhl Spring School

(label, “The Last Tycoon”)

film_1267

Graph Types

“The Passenger” “The Last Tycoon”
RDF graph
refs1abel refsTabeI
‘ mdb:film/3418 ‘ ‘ mdb:film/1267 ‘

‘ bm:offers/0743424425amazonOffer ‘

“United Kingdom” 62348447

moviactor movigtactor

4.7
“Jack Nicholson”

“Stanley Kubrick”

movie:direstor_name

mdb:director/8476

moviedirector

mdb:film /2685

refs:|abel

moviesactor

mdb:actor/30013

movie:initial|release_date

movieXrector

mdb:film /424

refs:[abel

v
"1980-05-23"

“A Clockwork Orange” “Spartacus”

© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

Graph Types

Property graph RDF graph

7
mdb:actor /30013
[amimioss] [mabsim/eze] [9900527]
vefsiabe\ refsabel
‘ “A Clockwork Orange” ‘ ‘ “Spartacus’ ‘
@ Workload: Online queries and o Workload: SPARQL queries

analytic workloads @ Query execution: subgraph

@ Query execution: Varies matching by homomorphism

@© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09) 5 /59

RDF Introduction

http://data.linkedmdb.org/resource /actor/JN29704

@ Everything is an uniquely named
resource

© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

RDF Introduction

xmlns:y=http://data.linkedmdb.org/resource/actor/
y:JN29704

@ Everything is an uniquely named
resource

@ Prefixes can be used to shorten the
names

© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

RDF Introduction

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704
1l !
@ Everything is an uniquely named M
resource [
@ Prefixes can be used to shorten the ‘ H‘ |
names y:JN29704:h;sName “Jack Nicholson"

i) y:JN29704:BornOnDate “1937-04-22"
@ Properties of resources can be defined

© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09) 6 /59

RDF Introduction

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704
1l !
@ Everything is an uniquely named }‘h‘
resource i
@ Prefixes can be used to shorten the ‘ H‘ |
names y:JN29704:h;sNam “Jack Nicholson"

i) y:JN29704:BornOnPate “1937-04-22"
@ Properties of resources can be defined

@ Relationships with other resources can
be defined

JN29704:movieActor

y:TS2014

AMASTERPIECE
OF MODERN HORROR

i
sniﬁnillﬁ

EXNGILS SELY AL T S
SAUATIHER Y06 STV TG
S L

y:TS2014:title “The Shining”
_ y:TS2014:releaseDate “1980-05-23"
© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

RDF Introduction

xmlns:y=http://data.linkedmdb.org/resource/actor/
y:JN29704

@ Everything is an uniquely named I
resource (i

@ Prefixes can be used to shorten the \ H ,
names

y:JN29704:hasNamk “Jack Nicholson”
i) y:JN29704:BornOnPate “1937-04-22"
@ Properties of resources can be defined

@ Relationships with other resources can IN29704:movieActor

be defined
@ Resource descriptions can be y:TS2014
contributed by different people/groups oA hon

and can be located anywhere in the web

o Integrated web “database” 5!

EXNGILS SELY AL T S
SAUATIHER Y06 STV TG
S L

y:TS2014:title “The Shining”
_ y:TS2014:releaseDate “1980-05-23"
© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

RDF Data Model

@ Triple: Subject, Predicate (Property), Object
(s,p,0) “
Subject: the entity that is described (URI Pred:icate
or blank node) ””
Predicate: a feature of the entity (URI) LN e
Object: value of the feature (URI, blank U B UB L

node or literal) U: set of URIs

° (s.p.0) € (UUB) x Ux (UUBUL) oottt
@ Set of RDF triples is called an RDF graph

Subject Predicate Object
http://...imdb.../film /2014 | rdfs:label “The Shining”
http://...imdb.../film /2014 | movie:releaseDate | “1980-05-23"
http://...imdb.../29704 movie:actor_name | “Jack Nicholson”

@© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09) 7 /59

RDF Example Instance

Prefixes: mdb=http://data.linkedmdb.org/resource/; geo=http://sws.geonames.org/
bm=http://wifo5-03.informatik.uni-mannheim.de/bookmashup/
lexvo=http://lexvo.org/id /;wp=http://en.wikipedia.org/wiki/

Subject Predicate Object
P {—mdb: film/2014— rdfs:label <{""The Shining
mdb:film /2014 movie:initial_release_date | “1980-05-23"" \

U Rl mdb:film /2014 movi

rector mdb:director/8476 | I—Ite ral

mdb:film /2014 movie:actor mdb:actor/29704

mdb:film /2014 movie:actor < _mdb:_actor/30013—

mdb:film /2014 movie:music_contributor | mdb: music,contribut((mlﬂu\

mdb:film /2014 foaf:based_near ge0:2635167

mdb:film /2014 movie:relatedBook bm:0743424425 U Rl
mdb:film /2014 lexvo:is0639-3/eng

mdb:director/8476 “Stanley Kubrick”

mdb:film /2685 movie:director mdb:director/8476
mdb:film /2685 rdfs:label “A Clockwork Orange”

mdb:film /424 movie:director <[“mdb:director/8476 —
mdb:film /424 rdfs:label “Spartacus”
mdb:actor/29704 movie:actor_name “Jack Nicholson™

mdb:film /1267 movie:actor mdb:actor/29704

mdb:film /1267 rdfs:label “The Last Tycoon”
mdb:film /3418 movie:actor mdb:actor/29704

mdb:film /3418 rdfs:label “The Passenger”
ge0:2635167 gn:name “United Kingdom”
£e0:2635167 gn:population 62348447

ge0:2635167 gn:wikipediaArticle wp:United_Kingdom
bm:books/0743424425 | dc:creator bm:persons/Stephen+King
bm:books/0743424425 | rev:rating 4.7

bm:books /0743424425 | scom:hasOffer bm:offers/0743424425amazonOffer
lexvo:is0639-3/eng rdfs:label “English”
lexvo:is0639-3/eng Ivont:usedIn lexvo:is03166,/CA
lexvo:is0639-3/eng Ivont:usesScript lexvo:script/Latn

M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

RDF Graph

“The Passenger” “The Last Tycoon”
refsTa bel refs% bel
‘ mdb:film /3418 ‘ ‘ mdb:film /1267 ‘

bm:offers/0743424425amazonOffer ‘

“United Kingdom" 62348447

moviactor movigtactor

47
“Jack Nicholson”

“Stanley Kubrick”

movie:dire
movigsactor

mdb:actor/30013

movie:initiall release_date

v
“1980-05-23"

mdb:film /2685

“A Clockwork Orange” “Spartacus”

Tamer Ozsu Dagstuhl Spring School (2016/03/07-09)

RDF Query Model — SPARQL

@ Query Model - SPARQL Protocol and RDF Query Language
@ Given U (set of URIs), L (set of literals), and V (set of variables), a
SPARQL expression is defined recursively:
e an atomic triple pattern, which is an element of

(UuV)x(UuV)x(UuVul)

e 7x rdfs:label “The Shining”
o P FILTER R, where P is a graph pattern expression and R is a built-in
SPARQL condition (i.e., analogous to a SQL predicate)
e ?x revirating ?p FILTER(?p > 3.0)
e P1 AND/OPT/UNION P2, where P1 and P2 are graph pattern
expressions
o Example:
SELECT ?name
WHERE {
?m rdfs:label ?name. ?m movie:director 7d.
?d movie:director_name " Stanley Kubrick"”.

?m movie:relatedBook ?b. ?b rev:rating 7r.
FILTER(?r > 4.0)

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 10 / 59

SPARQL Queries

SELECT ?name

WHERE {
m rdfs:label ?name. ?m movie:director 7d.
?7d movie:director_name " Stanley Kubrick”.
?m movie:relatedBook 7?b. ?b rev:rating 7r.
FILTER(?r > 4.0)

FILTER(?r > 4.0)

rev:rating

“Stanley Kubrick”

movie:director_name

movie:director

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 11 /59

utline

e Property Graph Processing
@ Classification
@ Online querying
o Offline analytics

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 12 / 59

Outline

e Property Graph Processing
@ Classification

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 13 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

Focus here is on the
dynamism of the
graphs in whether or
not they change and
how they change.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
Focus here is on the Focus here is on how
dynamism of the algorithms behave as
graphs in whether or their input changes.

not they change and
how they change.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
Focus here is on the Focus here is on how The types of workloads
dynamism of the algorithms behave as that the approaches are
graphs in whether or their input changes. designed to handle.

not they change and
how they change.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

| | | |
Static Dynamic Streaming Evolving
Graphs Graphs Graphs Graphs

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

| | | |
Static Dynamic Streaming Evolving
Graphs Graphs Graphs Graphs

Graphs do not
change or we
are not inter-
ested in their
changes — only
a snapshot is
considered.

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

| | | |
Static Dynamic Streaming Evolving
Graphs Graphs Graphs Graphs

Graphs do not Graphs change

change or we and we are
are not inter- interested in
ested in their their changes.

changes — only
a snapshot is
considered.

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

| | | |
Static Dynamic Streaming Evolving
Graphs Graphs Graphs Graphs

Graphs do not Graphs change Dynamic

change or we and we are graphs with
are not inter- interested in high veloc-
ested in their their changes. ity changes —
changes — only not possible to
a snapshot is see the entire
considered. graph at once.

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types

Static Dynamic Streaming Evolving
Graphs Graphs Graphs Graphs

Graphs do not Graphs change Dynamic Dynamic
change or we and we are graphs with graphs with un-
are not inter- interested in high veloc- known changes
ested in their their changes. ity changes — — requires re-
changes — only not possible to discovery of

a snapshot is see the entire the graph (e.g.,
considered. graph at once. LOD).

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
I I I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
I I I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads

Computation accesses a
portion of the graph
and the results are
computed for a subset
of vertices; e.g., point-
to-point shortest path,
subgraph matching,
reachability, SPARQL.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Classification

[Ammar and Ozsu, 2016]

Graph Dynamism

Algorithm Types

Static Dynamic

Graphs Graphs

© M. Tamer Ozsu

Streaming Evolving
Graphs

Computation accesses a
portion of the graph
and the results are
computed for a subset
of vertices; e.g., point-
to-point shortest path,
subgraph matching,
reachability, SPARQL.

Dagstuhl Spring School

Workload Types

i

Online Analytics
Queries Workloads

Computation accesses
the entire graph and
may require multiple
iterations; e.g., PageR-
ank, clustering, graph
colouring, all pairs
shortest path.

(2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
I I I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
! I
Offline Online Dynamic

Baltch

Streaming Incremental D .
ynamic

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

[Ammar and Ozsu, 2016]

Classification

Workload Types

Graph Dynamism Algorithm Types
I I

I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| I
Offline Online Dynamic

Sees the en- |_I_| B | h
atc

tire input in Streaming Incremental Dynamic

advance.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

[Ammar and Ozsu, 2016]

Classification

Graph Dynamism Algorithm Types Workload Types
I I I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
! I
Offline Online Dynamic

Sees the en- |—4|—| |
i Batch

tire input in €.reaming Incremental .
Dynamic

advance.
Sees the input
piece-meal as it
executes.

Dagstuhl Spring School (2016,/03/07-09)

© M. Tamer Ozsu

[Ammar and Ozsu, 2016]

Classification

Graph Dynamism Algorithm Types Workload Types
| | | |
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| I
Offline Online Dynamic
Sees the en- |—4|_| !
. . 7 . Batch
tire input in €.reaming Incremental D .
advance. ynamic

One-pass on-
line algorithm
with limited
memory.

Sees the input
piece-meal as it
executes.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
I I I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| I
Offline Online Dynamic
Sees the en- |—4|—| 5 lt h
tire input in €.reaming Incremental D ate .
advance. ynamic
Sees the input One-pass on- Online algo-
piece-meal as it line algorithm rithm with
et with limited some info
memory. about forth-

coming input.

(2016,/03,/07-09)

© M. Tamer Ozsu Dagstuhl Spring School

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
| | | |
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries \! Sees the en-
tire input
| | in advance,
. . . hich ma
Offline Online Dynamic Wi v
| change; an-
Sees the en- — Batch swers computed
tire input in €.reaming Incremental Dvnamic as change oc-
advance. y curs.
Sees the input One-pass on- Online algo-
piece-meal as it line algorithm rithm with
eentest with limited some info
memory. about forth-

coming input.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Classification [Ammar and Ozsu, 2016]

Graph Dynamism Algorithm Types Workload Types
| 1
I I I I
Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries \! Sees the en-
tire input
| | in advance,
Offline Online Dynamic which may
change; an-
Sees the en- |—4|_| | swers computed
tire input in €ireaming Incremental DBatch_ as change oc-
advance. ynamic curs.
One-pass on- Online algo- Similar to dynamic,

Sees the input

piece-meal as it line algorithm rithm with but computation
executes. with limited some info happens in batches
memory. about forth- of changes.

coming input.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 14 / 59

Example Design Points

Graph Dynamism

Algorith

Workload Types

.

m Types

Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| |
Offline Online Dynamic

Ba!cch

Streaming Incremental .
Dynamic

Compute the query result/perform analytic computation over the graph
as it exists.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

Example Design Points

Graph Dynamism

Algorith

Workload Types

.

m Types

Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| |
Offline Online Dynamic

Ba!cch

Streaming Incremental .
Dynamic

Compute the query result/perform analytic computation over the graph
as it is revealed.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

Example Design Points

Graph Dynamism

Algorith

Workload Types

.

m Types

Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| |
Offline Online Dynamic

Ba!cch

Streaming Incremental .
Dynamic

Compute the query result/perform analytic computation on each snap-
shot from scratch.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

Example Design Points

Graph Dynamism

Algorith

Workload Types

.

m Types

Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| |
Offline Online Dynamic

Ba!cch

Streaming Incremental .
Dynamic

Continuously compute the query result/perform analytic computation as
the input changes.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

Example Design Points

Graph Dynamism

Algorith

Workload Types

.

m Types

Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| |
Offline Online Dynamic

Ba!cch

Streaming Incremental .
Dynamic

Compute the query result/perform analytic computation after a batch of

input changes.

(2016,/03,/07-09)

Dagstuhl Spring School

© M. Tamer Ozsu

Example Design Points — Not all alternatives make sense

Graph Dynamism

Algorithm Types

Workload Types

.

Static Dynamic Streaming Evolving Online Analytics
Graphs Graphs Graphs Graphs Queries Workloads
| |
Offline Online Dynamic
I_I_I I
. Batch
Streaming Incremental D .
ynamic

Dynamic (or batch-dynamic) algorithms do not make sense for static

graphs.

© M. Tamer Ozsu

Dagstuhl Spring School

(2016,/03,/07-09)

Graph Processing Systems

Memory/ . Computing Supported
System
y Disk Architecture paradigm Workloads
Hadoop Disk Parallel/Distributed MapReduce Analytical
Haloop Disk Parallel/Distributed MapReduce Analytical
Pegasus Disk Parallel /Distributed MapReduce Analytical
. L. MapReduce .

GraphX

rap Disk Parallel/Distributed (Spark) Analytical
Pregel/Giraph Memory Parallel/Distributed Vertex-Centric Analytical
GraphLab Memory Parallel/Distributed Vertex-Centric Analytical
GraphChi Disk Single machine Vertex-Centric Analytical
Stream Disk Single machine Edge-Centric Analytical

. . Flexible using K-V Online &
Trinit

rinity Memory | Parallel/Distributed <tore on DSM Analytical
Titan Disk Parallel /Distributed K-V store Online

(Cassandra)
. . . Procedural/ .

Neo4J

€o Disk Single machine Linked-list Online

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 17 / 59

Graph Workloads

Online graph querying Offline graph analytics
@ Reachability @ PageRank
@ Single source shortest-path o Clustering
@ Subgraph matching @ Strongly connected
e SPARQL queries components
@ Diameter finding
@ Graph colouring
@ All pairs shortest path
@ Graph pattern mining
@ Machine learning algorithms

(Belief propagation, Gaussian
non-negative matrix
factorization)

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 18 / 59

Outline

e Property Graph Processing

@ Online querying

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 19 / 59

Reachability Queries

film_3418 film_1267
(label, “The Passenger”) (label, “The Last Tycoon”)

offers_0743424425amazonOffer

ge0-2635167
(name, “United Kingdom™)
(population, 62348447) actor 29704
(actor_name, “Jack Nicholson™)

(based_near)

film_2014
(initial_release_date, “1980-05-23")
(Iabel, "The Shining”)

‘ director_8476 ‘ actor_30013

(director_name, “Stanley Kubrick")

film_2685 film_424

(label, “A Clockwork Orange”) (label, “Spartacus”)

Tamer Ozsu Dagstuhl Spring School

Reachability Queries

film_3418 film_1267
(label, “The Passenger”) (label, “The Last Tycoon”)

offers_0743424425amazonOffer

ge0-2635167
(name, “United Kingdom™)
(population, 62348447) actor 29704
(actor_name, “Jack Nicholson™)

(based_near)

film_2014
(initial_release_date, “1980-05-23")
(Iabel, "The Shining”)

‘ director_8476 ‘ actor_30013

(director_name, “Stanley Kubrick")

film_2685 film_424
(label, “A Clockwork Orange”) (label, “Spartacus”)

Tamer Ozsu Dagstuhl Spring School

Reachability Queries

film_3418 film_1267
(label, “The Passenger”) (label, “The Last Tycoon”)

offers_0743424425amazonOffer

(hasgyffer)

ge0-2635167

(name, “United Kingdom™)
(population, 62348447) actor 29704

(actor_name, “Jack Nicholson™)

books 0743424425
(rating, 4.7)

(based_near)

film_2014
(initial_release_date, “1980-05-23")
(Iabel, “The Shining")

(dirgetor) actar,

director_8476 ‘ actor_30013

(director_name, “Stanley Kubrick")

film_2685 film_424

(label, “A Clockwork Orange”) (label, “Spartacus”)

Is there a book whose rating is > 4.0 associated with a film that was
directed by Stanley Kubrick?

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 20 / 59

Reachability Queries

© M. Tamer Ozsu Dagstuhl Spring School

Subgraph Matching

FILTER(?r > 4.0)

. revirating @

M. Tamer Ozsu

Y%
&
%
movie:director_name 6@
%
% ‘ “The Passenger” ‘ ‘ “The Last Tycoon” ‘
« refs%be\ refs:[abel
‘ mdb:film/3418 ‘ ‘ mdb:film/1267 ‘

62348447

ovieactor my actor

movie:refatedBook foafba:ed,nearm

‘“The Shining” |«"f5120e! mdb:ﬁlm/2014‘

ie:difector

oyier

movigsactor

movie:initiall release_date
mdb:actor/30013

v
1980-05-23"

‘ “A Clockwork Orange” ‘ ‘ “Spartacus” ‘

Dagstuhl Spring School (2016,/03/07-09) pal

Outline

e Property Graph Processing

o Offline analytics

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 22 /59

PageRank Computation

A web page is important if it is pointed to by other important

G\'Q

Oan®
v

@© M. Tamer Ozsu

P |Fp,
r(P1) , r(Ps)
r(P2) = 5 3
I’k(P')
rk-i-l(P') - Z “_— J‘
PjGBP’. PJ

Bp,: in-neighbours of P;
Fp,: out-neighbours of P;

Dagstuhl Spring School (2016,/03/07-09) 23 /59

PageRank Computation

A web page is important if it is pointed to by other important
pages.

W4

@© M. Tamer Ozsu

Iterative processing.

Dagstuhl Spring School

(2016,/03/07-09)

ri P;
(r—(P) EGEPI L
4 | Pj|
PJGBP,.
\ Iteration O Iteration 1 Iteration 2 Rha:mk at
er. 2
e n(P1)=1/6 n(P1)=1/18 n(P1)=1/36 5
n(P2)=1/6 n(P2)=5/36 n(P)=1/18 4
n(P3)=1/6 n(P3)=1/12 n(P;)=1/36 5
rn(Ps) =1/6 rn(Ps)=1/4 r(Ps) =17/72 1
I’o(P5) = 1/6 I‘1(P5) = 5/36 I‘Q(P5) = 11/72 3
@ e rn(Ps)=1/6 n(Ps)=1/6 r(Ps) =14/72 2

23 / 59

9 Graph Analytics Computational Models
@ Vertex-Centric
@ Block-Centric
@ MapReduce-Based
© Modified MapReduce

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 24 / 59

Some Alternative Computational Models for Offline

Analytics

o Vertex-centric (Scatter-Gather)
o Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
e Synchronous — Pregel , Giraph
e Asynchronous — GraphLab

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 25 / 59

Some Alternative Computational Models for Offline

Analytics

o Vertex-centric (Scatter-Gather)
o Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
e Synchronous — Pregel , Giraph
e Asynchronous — GraphLab
@ Block-centric
e Similar to vertex-centric but on blocks for communication
@ Connected subgraph of the graph
o Blogel

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 25 / 59

Some Alternative Computational Models for Offline

Analytics

o Vertex-centric (Scatter-Gather)
o Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
e Synchronous — Pregel , Giraph
e Asynchronous — GraphLab
@ Block-centric
e Similar to vertex-centric but on blocks for communication
@ Connected subgraph of the graph
o Blogel
@ MapReduce
o Need to save in HDFS intermediate results of each iteration — both
good and bad
e Hadoop, Haloop

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 25 / 59

Some Alternative Computational Models for Offline

Analytics

o Vertex-centric (Scatter-Gather)
o Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
e Synchronous — Pregel , Giraph
e Asynchronous — GraphLab
@ Block-centric
e Similar to vertex-centric but on blocks for communication
@ Connected subgraph of the graph
o Blogel
@ MapReduce
o Need to save in HDFS intermediate results of each iteration — both
good and bad
e Hadoop, Haloop
@ Modified MapReduce
o Based on Spark
o Keep intermediate states in memory
@ Provide fault-tolerance by keeping lineage

e GraphX

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 25 / 59

Outline

9 Graph Analytics Computational Models
@ Vertex-Centric

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 26 / 59

ric Computation

@ “Think like a vertex”

@ vertex_scatter(vertex v)
e Push local computation to @
neighbours on the out-bound
edges
o vertex_gather(vertex v)
e Gather local computation from
neighbours on the in-bound edges
@ Continue until all vertices are
inactive

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

ric Computation

@ “Think like a vertex”

@ vertex_scatter(vertex v)
e Push local computation to @
neighbours on the out-bound
edges
o vertex_gather(vertex v)
e Gather local computation from

neighbours on the in-bound edges

@ Continue until all vertices are Vote halt

inactive ®‘®
@ Vertex state machine

Message received

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 27 / 59

Synchronous Vertex-Centric Computation

Computation

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 28 / 59

Synchronous Vertex-Centric Computation

Superstep 1 Superstep 2 Superstep 3

F > T F

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 28 / 59

Synchronous Vertex-Centric Computation

Superstep 1 Superstep 2 Superstep 3

F > T F

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
vertex-centric computation
on its graph partition

. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 28 /

Synchronous Vertex-Centric Computation

Superstep 1 Superstep 2 Superstep 3
Machine 1 Machine 1
Machine 2 Machine 2
Machine 3 Machine 3
Communication Communication
Barrier Barrier

Each machine performs
vertex-centric computation
on its graph partition

. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 28 /

Synchronous Vertex-Centric Computation

Superstep 1 Superstep 2 Superstep 3
Machine 1 Machine 1 Machine 1
Machine 2 Machine 2 Machine 2
Machine 3 Machine 3 Machine 3

Communication Communication
Barrier Barrier

Each machine performs
vertex-centric computation
on its graph partition

. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 28 /

Asynchronous Vertex-Centric Computation

@ No communication barriers. v/
@ Uses the most recent vertex values. v/

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Asynchronous Vertex-Centric Computation

@ No communication barriers. v/
@ Uses the most recent vertex values. v/
@ Implemented via distributed locking
%1 V2
V0
V3 V4

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 29 / 59

Asynchronous Vertex-Centric Computation

@ No communication barriers. v/
@ Uses the most recent vertex values. v/
@ Implemented via distributed locking
%1 V2
V0
V3 V4

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Asynchronous Vertex-Centric Computation

@ No communication barriers. v/
@ Uses the most recent vertex values. v/

@ Implemented via distributed locking

Vi V2

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 29 / 59

Asynchronous Vertex-Centric Computation

@ No communication barriers. v/
@ Uses the most recent vertex values. v/

@ Implemented via distributed locking

Vi V2

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 29 / 59

Asynchronous Vertex-Centric Computation

@ No communication barriers. v/
@ Uses the most recent vertex values. v/
@ Implemented via distributed locking
%1 V2
V0
V3 V4

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 29 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

@ Giraph scales better across graphs;
GraphLab scales better across more machines.

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 30/ 59

Summary of an Experiment

A large study comparing Giraph, GraphLab, GPS, Mizan.

@ Giraph scales better across graphs;
GraphLab scales better across more machines.

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 45GB 14GB

[Han et al., 2014]

W 16 machines 128 machines
Giraph (byte array) 8.5GB 5.8GB
GraphLab (sync) 11GB 3.3GB

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.
@ Giraph scales better across graphs;
GraphLab scales better across more machines.
@ Distributed locking for asynchronous execution is not scalable —

Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

30 /

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

@ Giraph scales better across graphs;
GraphLab scales better across more machines.

@ Distributed locking for asynchronous execution is not scalable —
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

© Graph storage should be memory and mutation efficient.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 30/

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

@ Giraph scales better across graphs;
GraphLab scales better across more machines.

@ Distributed locking for asynchronous execution is not scalable —
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

© Graph storage should be memory and mutation efficient.

No Mutations With Mutations (DMST)

Time Memory Time Memory
Byte array v/ v Byte array XX v
Hash map X X Hash map v/ X

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 30/ 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

@ Giraph scales better across graphs;
GraphLab scales better across more machines.

@ Distributed locking for asynchronous execution is not scalable —
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

© Graph storage should be memory and mutation efficient.

© Message processing optimizations are very important.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.
© Giraph scales better across graphs;
GraphLab scales better across more machines.

@ Distributed locking for asynchronous execution is not scalable —
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

Graph storage should be memory and mutation efficient.
Message processing optimizations are very important.
Workloads have different resource demands

000

Algorithm CPU Memory Network
PageRank Medium Medium High

SSSP Low Low Low
WCC Low Medium Medium
DMST High High Medium

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

30 / 59

9 Graph Analytics Computational Models

@ Block-Centric

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 31/59

Block ic Computation

o Blogel : “Think like a block”; also “think like a
graph”
@ Vertex-centric assumes all vertices communicate over the network;
this is not efficient
o Read-world graphs have skewed vertex degree distribution

@ Common in power-law graphs
@ Problem: imbalanced communication workloads

o Real-world graphs have large diameters

@ Common in road networks, web graphs, terrain meshes
@ Problem: one superstep per hop = too many supersteps

o Real-world graphs have high average vertex degree

@ Common in social networks, mobile communication networks
@ Problem: heavy average communication workloads

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Blogel Principles

@ Exploit the partitioning of the graph
@ Message exchanges only among blocks
@ Block: a connected subgraph of the graph

@ Within a block, run a serial in-memory algorithm; no need to follow a
BSP model

=)

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 33 /59

Benefits of Block-Centric Computation

o High-degree vertices inside a block send no messages
o Fewer number of supersteps

@ Fewer number of blocks than vertices

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 34 /59

Example: Weakly Connected Component

@ Algorithm exchanges vertex id's
with neighbours

e id(v;) < min{v;, vj, ..., v}
where vj, ..., v, are neighbours
of Vi

@ Vertex-centric requires every
vertex sends to its neighbours
until every vertex is reached

@ Block-centric needs two

iterations:
© All vertices in partition A

exchange ids; X and Y send ./

ids to neighbours in partition

B A B
@ All vertices in partition B

exchange ids

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 35 /59

Block Construction

@ The partitioning algorithm needs to maximize number of vertices that
have all their edges in the same partition
@ Hash partitioning is not suitable because many vertices will probably
have at least one cut-edge
@ URL partitioner
o For web graphs: based on domain names of web page nodes
@ 2D partitioner
o For spatial networks: based on coordinates of node
@ Graph Voronoi diagram partitioner
o For general graphs

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 36 / 59

9 Graph Analytics Computational Models

@ MapReduce-Based

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 37 /59

MapReduce Basics [Li et al., 2014]

o For data analysis of very large data sets
e Highly dynamic, irregular, schemaless, etc.
e SQL too heavy

@ “Embarrassingly parallel problems”
@ New, simple parallel programming model
o Data structured as (key, value) pairs
e E.g. (doc-id, content), (word, count), etc.
e Functional programming style with two functions to be given:
o Map(kl,vl) — list(k2,v2)
@ Reduce(k2, list (v2)) — list(v3)
@ Implemented on a distributed file system (e.g., Google File System)
on very large clusters

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 38 /59

MapReduce Processing

(k. (v v,)) ——(Reduce }—
(i, (v, 1)) —(Reduce}—

Input data set

Output data set

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 39 / 59

MapReduce Architecture

PRaPid Sy ~4
/:::’/ Worker Worker Worker
//:’/ Map Process Map Process Map Process
/:f'l Input Module Input Module Input Module
’/,i" ,/"‘-—— Map Module Map Module Map Module
s /” Combine Module Combine Module Combine Module
,'I,",'/ Partition Module Partition Module Partition Module

Master

Scheduler

Worker Worker

Reduce Process Reduce Process

Group Module Group Module
Reduce Module Reduce Module
Output Module Output Module

Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Execution Flow with Architecture [Dean and Ghemawat, 2008]

User
Program

(1) fork "~...(l] fork

(1)gfork

(2) ‘4

X . @
assign assign
_-wmap reduce

split 0 / m 6) write _ | output
A 2 file 0
split 1 3) read (4) local write e :
split 2 red @
split 3
P = output
split 4 / file 1
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Hadoop

Most popular MapReduce implementation — developed by Yahoo!
Two components
@ Processing engine
o HDFS: Hadoop Distributed Storage System — others possible
o Can be deployed on the same machine or on different machines
Processes
@ Job tracker: hosted on the master node and implements the schedule
@ Task tracker: hosted on the worker nodes and accepts tasks from job tracker
and executes them
e HDFS
@ Name node: stores how data are partitioned, monitors the status of data
nodes, and data dictionary
o Data node: Stores and manages data chunks assigned to it

Worker 1 Name Node Worker n
MapReduce Task Tracker [+—— Job Tracker ——+| Task Tracker
HDFS Data Node [+—1 Name Node f—t| Data Node

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 42 / 59

[Bu et al., 2012]

@ Overcome MapReduce shortcomings for iterative jobs

e Having to save data in HDFS in between each iteration
o Checking the fixpoint requires a new job at each iteration

@ Scheduler change: assign to the same machine the map & reduce
tasks that occur in different iterations but access the same data

@ Cache invariant data

@ Cache reduce output to easily check for fixpoint

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 43/

9 Graph Analytics Computational Models

© Modified MapReduce

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 44 / 59

@ MapReduce does not perform well in iterative computations
o Workflow model is acyclic
e Have to write to HDFS after each iteration and have to read from
HDFS at the beginning of next iteration

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 45 / 59

@ MapReduce does not perform well in iterative computations

o Workflow model is acyclic
e Have to write to HDFS after each iteration and have to read from
HDFS at the beginning of next iteration

@ Spark objectives

o Better support for iterative programs
e Provide a complete ecosystem
[}
o

Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 45 / 59

@ MapReduce does not perform well in iterative computations
o Workflow model is acyclic
e Have to write to HDFS after each iteration and have to read from
HDFS at the beginning of next iteration
@ Spark objectives
o Better support for iterative programs
e Provide a complete ecosystem
o Similar abstraction (to MapReduce) for programming
e Maintain MapReduce fault-tolerance and scalability
@ Fundamental concepts
o RDD: Reliable Distributed Datasets

o Caching of working set
e Maintaining lineage for fault-tolerance

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09)

Spark Ecosystem [Michiardi, 2015]

Native MLlib GraphX
Spark .
Spark . (machine (graph
Streaming ’ .
Apps learning) | processing)

Apache Spark

© M. Tamer Ozsu Dagstuhl Spring School

Spark Programming Model [Zaharia et al., 2010, 2012]

M. Tamer Ozsu Dagstuhl Spring School

Spark Programming Model [Zaharia et al., 2010, 2012]

Each transform generates a
new RDD that may also be
cached or processed

Transform
RDD?

Tamer Ozsu Dagstuhl Spring School

Spark Programming Model [Zaharia et al., 2010, 2012]

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Each transform generates a
new RDD that may also be
cached or processed

Transform
RDD?

Tamer Ozsu Dagstuhl Spring School

Spark Programming Model [Zaharia et al., 2010, 2012]

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Each transform generates a
new RDD that may also be
cached or processed

Processing done on one of the RDDs;
Done in parallel across workers;
First processing on a RDD is from disk;

Subsequent processing of the same RDD from cache

Transform
RDD?

M. Tamer Ozsu Dagstuhl Spring School

Example — Log Mining

[Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the

error messages, read this file into memory, then interactively search for
various patterns

Driver

Worker Worker Worker

@© M. Tamer Ozsu

Dagstuhl Spring School (2016,/03/07-09) 48 / 59

Example — Log Mining

[Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the

error messages, read this file into me interactively search for
CreateRDD

various patterns
lines = spark.textFile(hdfs://...)

Driver

Worker Worker Worker

@© M. Tamer Ozsu

Dagstuhl Spring School (2016,/03/07-09) 48 / 59

Example — Log Mining

[Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for

various patterns Transform RDD
lines = spark.textFile(hdfs://...)
errors = lines.filter(_.startsWith(ERROR))

Driver

Worker Worker

@© M. Tamer Ozsu

Dagstuhl Spring School

48 / 59

Example — Log Mining

[Zaharia et al.,

Load log messages from a file system, create a new file by filtering the

error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

errors = lines.filter(_.startsWith(ERROR)
messages = errors.map(_.split(‘\t ’)(2))

Another transform

Driver

Worker Worker Worker

@© M. Tamer Ozsu

Dagstuhl Spring School (2016,/03/07-09) 48 / 59

Example — Log Mining [Zaharia et al.,

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

errors = lines.filter (_.starts|iqyn iy s
messages = errors.map(_.split(: ;
cachedMsgs = messages.cache() Driver

Worker Worker Worker

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 48 / 59

Example — Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

errors = lines.filter(_.startsWith(ERROR))
messages = errors.map(_.split(‘\t ’)(2))
cachedMsgs = messages.cache()

Driver

cachedMsgs.filter (_.contains(foo)).count

Worker Worker

@© M. Tamer Ozsu Dagstuhl Spring School /03/ 48 / 59

Example — Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

errors = lines.filter(_.startsWith(ERROR))
messages = errors.map(_.split(‘\t ’)(2))

cachedMsgs = messages.cache() Driver

cachedMsgs.filter (_.contains(foo)).count

Tasks

Worker Worker

@© M. Tamer Ozsu Dagstuhl Spring School /03/ 48 / 59

Example — Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

errors = lines.filter(_.startsWith(ERROR))
messages = errors.map(_.split(‘\t ’)(2))

cachedMsgs = messages.cache() Driver

cachedMsgs.filter (_.contains(foo)).count

Results Tasks

Worker Worker Worker

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 48 / 59

Example — Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

errors = lines.filter(_.startsWith(ERROR))
messages = errors.map(_.split(‘\t ’)(2))

cachedMsgs = messages.cache() Driver

cachedMsgs.filter (_.contains(foo)).count

Results Tasks

Worker Worker Worker

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 48 / 59

Example — Log Mining [Zaharia et al.,

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

errors = lines.filter(_.startsWith(ERROR))
messages = errors.map(_.split(‘\t ’)(2))

cachedMsgs = messages.cache() Another Action \' Driver
accesses cache -
cachedMsgs.filter (_.contains(foo)).count
cachedMsgs.filter (_.contains(bar)) .cousn
Results Tasks

Worker Worker Worker

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 48 / 59

RDD and Processing
HDFS = E’

lines = spark.textFile(hdfs://...)

lines

errors = lines.filter(_.startsWith(ERROR))

errors

messages = errors.map_.split(‘\t ’)(2)

These are not yet generated

messages

© M. Tamer Ozsu Dagstuhl Spring School

RDD and Processing

lines

messages.filter(_.contains(foo)).count

Command not yet executed

Now the RDDs are materialized;

messages.filter(_.contains(foo))

Driver

M. Tamer Ozsu Dagstuhl Spring School

GraphX [Gonzalez et al., 2014]

@ Built on top of Spark
@ Objective is to combine data analytics with graph processing
e Unify computation on tables and graphs

o Carefully convert graph to tabular representation

@ Native GraphX API or can accommodate vertex-centric computation

App | App
Vertex-
centric API

Native MLIib GraphX
Spark (machine (graph
Apps learning) processing)

Apache Spark

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 50 / 59

Spark
Streaming

GraphX: Representation of Graphs as Tables

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 51 /59

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

Edge-disjoint
partitioning

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 51 /59

GraphX: Representation of Graphs as Tables

(A
Partition 1 Vertex Table
A | v-prop
—
B | v-prop _E
B
O
(g}
=
| | v-prop
D | v-prop
o~
E | v-prop _QE)
=
F | v-prop ®
=
Partition 2 M orop
Edge-disjoint -
gec) (RDD)

partitioning v-prop:vertex prop.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 51 /59

GraphX: Representation of Graphs as Tables

(N
Partition 1 (Vertex Table) Edge Table
[B]vprop | £ A eprop [
=
. O
. T
' =
|| F | eprop | G
D | v-prop o Al e-prop | b
E (O]
PP ;E A | e-prop | E
F | v-prop é
Partition 2 M orop Eeprop | £
I J L)
Edge-disjoint (RDD) (ROD)
partitioning v-prop:vertex prop. e oron-edze Dron

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 51 /59

GraphX: Representation of Graphs as Tables

\N| A | e-prop | E
v-prop 1

(N - N
Partition 1 Vertex Table Edge Table
Alerrop [B
E v-prop | £ \f A | e-prop | C
B
. O v
. (g} :
) = :
|| F | e-prop | G
D | v-prop o Al e-prop | b
E | v-prop _QE)
F
J

S :
Partition 2 V-prop E | eprop | F
- Joining vertices)
Edge-disjoint g and edges
partitioning (RDD) Move verticesgto edges (RDD)
v-prop:vertex prop. e-prop:edge prop

© M. Tamer Ozsu Dagstuhl Spring School 51 /59

GraphX: Representation of Graphs as Tables

Partition 1 (Vertex Table | [R'qutt)ilgg) (Edge Table)

B
O
: T .
1
-
o] [Fleele
ZAN
D | v-prop [0| |) F1112] |[A]epror|D
E | v-prop ?:_)/ D2 ‘| A | eprop | E
—T
F | v-prop < —TT| E |2 :
Partition 2 J [v-prop J |2 E | eprop | F
Edvedisioint J /N g
oo (RDD) (RDD) (RDD)
partitioning ——,_prop:vertex prop. e-prop:edge prop

© M. Tamer Ozsu Dagstuhl Spring School (2016/03/07-09) 51 /59

GraphX: Computation Model

s “ e 2
Vertex Table Edge Table
A | v-prop A | e-prop | B
i
B | v-prop _g A | eprop | ¢
L=
O
[
=
|| v-prop F | eprop | G
D | v-prop o N c-prop | b
E | v-prop .?5’ A | eprop | £
S
F | v-prop | &
VPP | = :
J | v-prop E | eprop | E
\ J \ J

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 52 / 59

GraphX: Computation Model

(1\
Vertex Table

A | v-prop

B | v-prop

Machine 1

| |v-prop

v-prop

V-prop

M| m|| O

V-prop

Machine 2

J | v-prop

© M. Tamer Ozsu

A
A
C

E
J

First Phase: Join

Vertex table x Edge table

wrop (2]
Triples View

Dagstuhl Spring School

V-prop

v-prop

V-prop

v-prop

V-prop

Edge Table)
A | e-prop | B
A | e-prop | C
F | e-prop | G
A | e-prop | D
A | eprop | E
E | eprop | F

y,

(2016/03/07-09) 52 / 59

GraphX: Computation Model

Second Phase: Compute neighbourhood,.

© M. Tamer Ozsu

Dagstuhl Spring School

(2
Vertex Table Group-by aggregate Edge Table
A | v-pro A | e-pro
- zz p Eprop—(B] vrop| | = epmp -
[
i) v-prop F | eprop | G
D | v-prop A | e-prop | D
N
E | v-prop e-prop G | v-prop
(0]
E | v-prop E - — - Alepop | E
-v-prop - -v—prop
F | v-prop é’
J | v-pro) . E | eprop | F
Prop Triples View
- J g J

(2016,/03,/07-09)

52 / 59

GraphX: Operators

@ Table transform operators — inherited from Spark

map(func) Return a new RDD formed by passing each element
of the source through a function func

filter(func) Return a new RDD formed by selecting those
elements of the source on which func returns true

flatMap(func) Similar to map, but each input item can be mapped
to 0 or more output items

mapPartitions(func) Similar to map, but runs separately on each partition
(block) of the RDD, so func must be of type lterator

sample(repl, fraction, Sample a fraction fraction of the data, with or

seed) without replacement (set repl accordingly), using a
given random number generator seed

union(otherDataset) Return a new RDD containing the union/intersection

intersection() of the elements in the source RDD and the argument

groupByKey() Operates on a RDD of (K, V) pairs, returns a RDD
of (K, Iterable<V>) pairs

reduceByKey(func,...)| Operates on a RDD of (K, V) pairs, returns a RDD
of (K, V) pairs where the values for each key are
aggregated using the given reduce function func

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 53 / 59

GraphX: Operators

@ Table transform operators — inherited from Spark

@ Graph operators

Graph(vertex coll, Logically binds together a pair of vertex and edge
edge coll) property collections into a property graph; verifies
that each vertex occurs only once and edges connect
existing vertices

triplets(vertex coll, Returns the triplets view of the graph

vertex coll, edge coll)
mrTriplets(map,reduce)| MapReduce triplets - encodes the two-stage process
of join to create triplets and group by

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 53 / 59

Acknowledgements

This presentation draws upon collaborative research and discussions with
the following colleagues

@ Khaled Ammar, U. Waterloo Khuzaima Daudjee, U. Waterloo

Young Han, U. Waterloo

@© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 54 / 59

Research supported by

NSERC
CRSNG

INNOVATION.CA D-' Ontario

CANADA FOUNDATION | FONDATION CANADIENNE
FOR INNOVATION POURLINNOVATION

MINISTRY OF RESEARCH AND INNOVATION
MINISTERE DE LA RECHERCHE ET DE L'INNOVATION

(Coashessarch R 1M Canada Lab

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 55 / 59

Tamer Ozsu Dagstuhl Spring School

References |

Ammar, K. and Ozsu, M. T. (2016). Approaches to graph processing — an overview. In
preparation.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012). The HalLoop approach to
large-scale iterative data analysis. VLDB J., 21(2):169-190.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107-113.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I.
(2014). GraphX: graph processing in a distributed dataflow framework. In Proc. 11th
USENIX Symp. on Operating System Design and Implementation, pages 599-613.

Han, M., Daudjee, K., Ammar, K., Ozsu, M. T, Wang, X., and Jin, T. (2014). An
experimental comparison of Pregel-like graph processing systems. Proc. VLDB
Endowment, 7(12):1047-1058.

Li, F., Ooi, B. C., Ozsu, M. T., and Wu, S. (2014). Distributed data management using
MapReduce. ACM Comput. Surv., 46(3):Article No. 31.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.
(2012). Distributed graphlab: A framework for machine learning in the cloud. Proc.
VLDB Endowment, 5(8):716-727.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 57 / 59

References Il

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 135-146.

Michiardi, P. (2015). Introduction to spark internals. Slideshare. Available from:
http://www.slideshare.net/michiard/introduction-to-spark-internals?
qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf 1&b=&from_search=11 [Last
retrieved: 9 July 2015].

Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013). From
“think like a vertex” to “think like a graph”. Proc. VLDB Endowment, 7(3):193-204.
Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for

distributed computation on real-world graphs. Proc. VLDB Endowment,
7(14):1981-1992.

Zaharia, M. (2016). An Architecture for Fast and General Data Processing on Large
Clusters. ACM Books. Forthcoming.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,
Shenker, S., and Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proc. 9th USENIX Symp. on
Networked Systems Design & Implementation, pages 2-2.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 58 / 59

http://www.slideshare.net/michiard/introduction-to-spark-internals?qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf1&b=&from_search=11
http://www.slideshare.net/michiard/introduction-to-spark-internals?qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf1&b=&from_search=11

References IlI

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, |. (2010). Spark:
Cluster computing with working sets. In Proc. 2nd USENIX Workshop on Hot Topics
in Cloud Computing, pages 10-10.

© M. Tamer Ozsu Dagstuhl Spring School (2016,/03/07-09) 59 / 59

	Introduction – Graph Types
	Property Graph Processing
	Classification
	Online querying
	Offline analytics

	Graph Analytics Computational Models
	Vertex-Centric
	Block-Centric
	MapReduce-Based
	Modified MapReduce

