An Introduction to Graph Analytics Platforms

M. Tamer Özsu

University of Waterloo David R. Cheriton School of Computer Science

Trade volumes and connections

1200 1 200 02 -> HOADI VIDTO Prevention of logitude and logitudence div m

Biological networks

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

© M. Tamer Özsu

Dagstuhl Spring School

(2016/03/07-09) 2 / 59

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

Graph Types

Property graph

Graph Types

(c) M. Tamer Özsu

Property graph

RDF graph

- Workload: Online queries and analytic workloads
- Query execution: Varies

- Workload: SPARQL queries
- Query execution: subgraph matching by homomorphism

http://data.linkedmdb.org/resource/actor/JN29704

• Everything is an uniquely named resource

xmlns:y=http://data.linkedmdb.org/resource/actor/ y:JN29704

- Everything is an uniquely named resource
- Prefixes can be used to shorten the names

- Everything is an uniquely named resource
- Prefixes can be used to shorten the names
- Properties of resources can be defined

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704:hasName "Jack Nicholson" y:JN29704:BornOnDate "1937-04-22"

- Everything is an uniquely named resource
- Prefixes can be used to shorten the names
- Properties of resources can be defined
- Relationships with other resources can be defined

y:TS2014:title "The Shining" y:TS2014:releaseDate "1980-05-23"

(2016/03/07-09) 6 / 59

- Everything is an uniquely named resource
- Prefixes can be used to shorten the names
- Properties of resources can be defined
- Relationships with other resources can be defined
- Resource descriptions can be contributed by different people/groups and can be located anywhere in the web

• Integrated web "database"

y:TS2014:title "The Shining" y:TS2014:releaseDate "1980-05-23"

RDF Data Model

- Triple: Subject, Predicate (Property), Object (*s*, *p*, *o*)
 - Subject: the entity that is described (URI or blank node)
 - Predicate: a feature of the entity (URI) Object: value of the feature (URI, blank node or literal)

U: set of URIs B: set of blank nodes L: set of literals

(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L)
Set of RDF triples is called an RDF graph

Subject	Predicate	Object
http://imdb/film/2014	rdfs:label	"The Shining"
http://imdb/film/2014	movie:releaseDate	"1980-05-23"
http://imdb/29704	movie:actor_name	"Jack Nicholson"

RDF Example Instance

Prefixes: mdb=http://data.linkedmdb.org/resource/; geo=http://sws.geonames.org/ bm=http://wifo5-03.informatik.uni-mannheim.de/bookmashup/ lexvo=http://lexvo.org/id/wp=http://en.wikiedia.org/wiki/

		0, , , , , , , , , , , , , , , , , , ,		
	Subject	Predicate	Object	
_	mdb: film/2014	rdfs:label <	"The Shining"	1
	mdb:film/2014	movie:initial_release_date	"1980-05-23" '	litaral
UN	mdb:film/2014	movie:director	mdb:director/8476	LILEI al
	mdb:film/2014	movie:actor	mdb:actor/29704	
	mdb:film/2014	movie:actor <	mdb: actor/30013	
	mdb:film/2014	movie:music_contributor	mdb: music_contributor/4110	
	mdb:film/2014	foaf:based_near	geo:2635167	
	mdb:film/2014	movie:relatedBook	bm:0743424425	
	mdb:film/2014	movie:language	lexvo:iso639-3/eng	υπι
	mdb:director/8476	movie:director_name	"Stanley Kubrick"	
	mdb:film/2685	movie:director	mdb:director/8476	
	mdb:film/2685	rdfs:label	"A Clockwork Orange"	
	mdb:film/424	movie:director <	mdb:director/8476	
	mdb:film/424	rdfs:label	"Spartacus"	
	mdb:actor/29704	movie:actor_name	"Jack Nicholson"	
	mdb:film/1267	movie:actor	mdb:actor/29704	
	mdb:film/1267	rdfs:label	"The Last Tycoon"	
	mdb:film/3418	movie:actor	mdb:actor/29704	
	mdb:film/3418	rdfs:label	"The Passenger"	
	geo:2635167	gn:name	"United Kingdom"	
	geo:2635167	gn:population	62348447	
	geo:2635167	gn:wikipediaArticle	wp:United_Kingdom	
	bm:books/0743424425	dc:creator	bm:persons/Stephen+King	
	bm:books/0743424425	rev:rating	4.7	
	bm:books/0743424425	scom:hasOffer	bm:offers/0743424425amazonOffer	
	lexvo:iso639-3/eng	rdfs:label	"English"	
	lexvo:iso639-3/eng	lvont:usedIn	lexvo:iso3166/CA	
	lexvo:iso639-3/eng	lvont:usesScript	lexvo:script/Latn	

(C) M. Tamer Özsu

RDF Query Model - SPARQL

- Query Model SPARQL Protocol and RDF Query Language
- Given *U* (set of URIs), *L* (set of literals), and *V* (set of variables), a SPARQL expression is defined recursively:
 - an atomic triple pattern, which is an element of

$$(U \cup V) \times (U \cup V) \times (U \cup V \cup L)$$

• ?x rdfs:label "The Shining"

- *P* FILTER *R*, where *P* is a graph pattern expression and *R* is a built-in SPARQL condition (i.e., analogous to a SQL predicate)
 - ?x rev:rating ?p FILTER(?p > 3.0)
- *P*1 AND/OPT/UNION *P*2, where *P*1 and *P*2 are graph pattern expressions

• Example:

```
SELECT ?name
WHERE {
    ?m rdfs:label ?name. ?m movie:director ?d.
    ?d movie:director_name "Stanley Kubrick".
    ?m movie:relatedBook ?b. ?b rev:rating ?r.
    FILTER(?r > 4.0)
```


Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

[Ammar and Özsu, 2016]

[Ammar and Özsu, 2016]

[Ammar and Özsu, 2016]

[Ammar and Özsu, 2016]

[Ammar and Özsu, 2016]

		-			
	Graph Dynamism	Algorith	m Types	Workload Ty	
	ĺ				
Static	Dynamic Stream	ing Evolving			
Graphs	Graphs Graphs	s Graphs			
Graphs do not	Graphs change	Dynamic			
change or we	and we are	graphs with			
are not inter-	interested in	high veloc-			
ested in their	their changes.	ity changes –			
changes – only		not possible to			
a snapshot is		see the entire			
considered.		graph at once.			
		-			

[Ammar and Özsu, 2016]

Computation accesses a portion of the graph and the results are computed for a subset of vertices; e.g., pointto-point shortest path, subgraph matching, reachability, SPARQL.

[Ammar and Özsu, 2016]

Computation accesses a portion of the graph and the results are computed for a subset of vertices; e.g., pointto-point shortest path, subgraph matching, reachability, SPARQL. Computation accesses the entire graph and may require multiple iterations; e.g., PageRank, clustering, graph colouring, all pairs shortest path.

[Ammar and Özsu, 2016]

[Ammar and Özsu, 2016]

Compute the query result/perform analytic computation over the graph as it exists.

Compute the query result/perform analytic computation over the graph as it is revealed.

Compute the query result/perform analytic computation on each snapshot from scratch.

Continuously compute the query result/perform analytic computation as the input changes.

Compute the query result/perform analytic computation after a batch of input changes.

Example Design Points - Not all alternatives make sense

Dynamic (or batch-dynamic) algorithms do not make sense for static graphs.

Graph Processing Systems

System	Memory/ Disk	Architecture	Computing paradigm	Supported Workloads
Hadoop	Disk	Parallel/Distributed	MapReduce	Analytical
Haloop	Disk	Parallel/Distributed	MapReduce	Analytical
Pegasus	Disk	Parallel/Distributed	MapReduce	Analytical
GraphX	Disk	Parallel/Distributed	MapReduce (Spark)	Analytical
Pregel/Giraph	Memory	Parallel/Distributed	Vertex-Centric	Analytical
GraphLab	Memory	Parallel/Distributed	Vertex-Centric	Analytical
GraphChi	Disk	Single machine	Vertex-Centric	Analytical
Stream	Disk	Single machine	Edge-Centric	Analytical
Trinity	Memory	Parallel/Distributed	Flexible using K-V store on DSM	Online & Analytical
Titan	Disk	Parallel/Distributed	K-V store (Cassandra)	Online
Neo4J	Disk	Single machine	Procedural/ Linked-list	Online
© M. Tamer Özsu		Dagstuhl Spring Schoo	(2016/	03/07-09) 17 / 59

Online graph querying

- Reachability
- Single source shortest-path
- Subgraph matching
- SPARQL queries

Offline graph analytics

- PageRank
- Clustering
- Strongly connected components
- Diameter finding
- Graph colouring
- All pairs shortest path
- Graph pattern mining
- Machine learning algorithms (Belief propagation, Gaussian non-negative matrix factorization)

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

Can you reach film_1267 from film_2014?

© M. Tamer Özsu

Is there a book whose rating is >4.0 associated with a film that was directed by Stanley Kubrick?

Think of Facebook graph and finding friends of friends.

© M. Tamer Özsu

Dagstuhl Spring School

(2016/03/07-09) 20 / 59

Subgraph Matching

(c) M. Tamer Özsu

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

PageRank Computation

A web page is important if it is pointed to by other important pages.

$$r(P_i) = \sum_{P_j \in B_{P_i}} \frac{r(P_j)}{|F_{P_j}|}$$
$$r(P_2) = \frac{r(P_1)}{2} + \frac{r(P_3)}{3}$$
$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|F_{P_j}|}$$

 B_{P_i} : in-neighbours of P_i F_{P_i} : out-neighbours of P_i

PageRank Computation

A web page is important if it is pointed to by other important pages.

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|F_{P_j}|}$$

Iteration 0	Iteration 1	Iteration 2	Rank at Iter. 2
$r_0(P_1) = 1/6$	$r_1(P_1) = 1/18$	$r_2(P_1) = 1/36$	5
$r_0(P_2) = 1/6$	$r_1(P_2) = 5/36$	$r_2(P_2) = 1/18$	4
$r_0(P_3) = 1/6$	$r_1(P_3) = 1/12$	$r_2(P_3) = 1/36$	5
$r_0(P_4) = 1/6$	$r_1(P_4) = 1/4$	$r_2(P_4) = 17/72$	1
$r_0(P_5) = 1/6$	$r_1(P_5) = 5/36$	$r_2(P_5) = 11/72$	3
$r_0(P_6) = 1/6$	$r_1(P_6) = 1/6$	$r_2(P_6) = 14/72$	2

Iterative processing.

C M. Tamer Özsu

Dagstuhl Spring School

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

- Vertex-centric (Scatter-Gather)
 - Specify (a) computation at each vertex, and (b) communication with neighbour vertices
 - Synchronous Pregel [Malewicz et al., 2010], Giraph
 - Asynchronous GraphLab [Low et al., 2012]

- Vertex-centric (Scatter-Gather)
 - Specify (a) computation at each vertex, and (b) communication with neighbour vertices
 - Synchronous Pregel [Malewicz et al., 2010], Giraph
 - Asynchronous GraphLab [Low et al., 2012]
- Block-centric
 - Similar to vertex-centric but on blocks for communication
 - Connected subgraph of the graph
 - Blogel [Yan et al., 2014]

- Vertex-centric (Scatter-Gather)
 - Specify (a) computation at each vertex, and (b) communication with neighbour vertices
 - Synchronous Pregel [Malewicz et al., 2010], Giraph
 - Asynchronous GraphLab [Low et al., 2012]
- Block-centric
 - Similar to vertex-centric but on blocks for communication
 - Connected subgraph of the graph
 - Blogel [Yan et al., 2014]
- MapReduce
 - Need to save in HDFS intermediate results of each iteration both good and bad
 - Hadoop, Haloop [Bu et al., 2012]

- Vertex-centric (Scatter-Gather)
 - Specify (a) computation at each vertex, and (b) communication with neighbour vertices
 - Synchronous Pregel [Malewicz et al., 2010], Giraph
 - Asynchronous GraphLab [Low et al., 2012]
- Block-centric
 - Similar to vertex-centric but on blocks for communication
 - Connected subgraph of the graph
 - Blogel [Yan et al., 2014]
- MapReduce
 - Need to save in HDFS intermediate results of each iteration both good and bad
 - Hadoop, Haloop [Bu et al., 2012]
- Modified MapReduce
 - Based on Spark [Zaharia et al., 2010; Zaharia, 2016]
 - Keep intermediate states in memory
 - Provide fault-tolerance by keeping lineage
 - GraphX [Gonzalez et al., 2014]

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

- "Think like a vertex"
- vertex_scatter(vertex v)
 - Push local computation to neighbours on the out-bound edges
- vertex_gather(vertex v)
 - Gather local computation from neighbours on the in-bound edges
- Continue until all vertices are inactive

	\bigcirc
?	Ź

- "Think like a vertex"
- vertex_scatter(vertex v)
 - Push local computation to neighbours on the out-bound edges
- vertex_gather(vertex v)
 - Gather local computation from neighbours on the in-bound edges
- Continue until all vertices are inactive
- Vertex state machine

Computation

on its graph partition

Each machine performs vertex-centric computation on its graph partition

Each machine performs vertex-centric computation on its graph partition
- No communication barriers.
- Uses the most recent vertex values. ✓

- No communication barriers.
- Uses the most recent vertex values. ✓
- Implemented via distributed locking

- No communication barriers.
- Uses the most recent vertex values. ✓
- Implemented via distributed locking

- No communication barriers. 🗸
- Uses the most recent vertex values. ✓
- Implemented via distributed locking

- No communication barriers. 🗸
- Uses the most recent vertex values. ✓
- Implemented via distributed locking

- No communication barriers.
- Uses the most recent vertex values. ✓
- Implemented via distributed locking

Summary of an Experiment

A large study comparing Giraph, GraphLab, GPS, Mizan.

Giraph scales better across graphs;
 GraphLab scales better across more machines.

Summary of an Experiment

A large study comparing Giraph, GraphLab, GPS, Mizan.

Giraph scales better across graphs;
 GraphLab scales better across more machines.

64 machines	TW	UK
Giraph (byte array)	5.8GB	7.0GB
GraphLab (sync)	4.5GB	14GB

TW	16 machines	128 machines
Giraph (byte array)	8.5GB	5.8GB
GraphLab (sync)	11GB	3.3GB

- Giraph scales better across graphs;
 GraphLab scales better across more machines.
- Oistributed locking for asynchronous execution is not scalable Performance degrades as more machines are used due to lock contention, termination scheme, lack of message batching

- Giraph scales better across graphs;
 GraphLab scales better across more machines.
- Oistributed locking for asynchronous execution is not scalable Performance degrades as more machines are used due to lock contention, termination scheme, lack of message batching
- Sraph storage should be memory and mutation efficient.

- Giraph scales better across graphs;
 GraphLab scales better across more machines.
- Oistributed locking for asynchronous execution is not scalable Performance degrades as more machines are used due to lock contention, termination scheme, lack of message batching
- Scraph storage should be memory and mutation efficient.

No	Mutatio	ons	With Mut	ations	(DMST)
	Time	Memory		Time	Memory
Byte array	1	1	Byte array	XX	1
Hash map	×	×	Hash map	1	×

- Giraph scales better across graphs;
 GraphLab scales better across more machines.
- Oistributed locking for asynchronous execution is not scalable Performance degrades as more machines are used due to lock contention, termination scheme, lack of message batching
- Sraph storage should be memory and mutation efficient.
- Message *processing* optimizations are very important.

- Giraph scales better across graphs; GraphLab scales better across more machines.
- Oistributed locking for asynchronous execution is not scalable Performance degrades as more machines are used due to lock contention, termination scheme, lack of message batching
- S Graph storage should be memory and mutation efficient.
- Message *processing* optimizations are very important.
- S Workloads have different resource demands

Algorithm	CPU	Memory	Network
PageRank	Medium	Medium	High
SSSP	Low	Low	Low
WCC	Low	Medium	Medium
DMST	High	High	Medium

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

Vertex-Centric

Block-Centric

- MapReduce-Based
- Modified MapReduce

- Blogel [Yan et al., 2014]: "Think like a block"; also "think like a graph" [Tian et al., 2013]
- Vertex-centric assumes all vertices communicate over the network; this is not efficient
 - Read-world graphs have skewed vertex degree distribution
 - Common in power-law graphs
 - Problem: imbalanced communication workloads
 - Real-world graphs have large diameters
 - Common in road networks, web graphs, terrain meshes
 - Problem: one superstep per hop \Rightarrow too many supersteps
 - Real-world graphs have high average vertex degree
 - Common in social networks, mobile communication networks
 - Problem: heavy average communication workloads

Blogel Principles

- Exploit the partitioning of the graph
- Message exchanges only among blocks
- Block: a connected subgraph of the graph
- Within a block, run a serial in-memory algorithm; no need to follow a BSP model

Benefits of Block-Centric Computation

- High-degree vertices inside a block send no messages
- Fewer number of supersteps
- Fewer number of blocks than vertices

Example: Weakly Connected Component

- Algorithm exchanges vertex id's with neighbours
- $id(v_i) \leftarrow min\{v_i, v_j, \dots, v_k\}$ where v_j, \dots, v_k are neighbours of v_i
- Vertex-centric requires every vertex sends to its neighbours until every vertex is reached
- Block-centric needs two iterations:
 - All vertices in partition A exchange ids; X and Y send ids to neighbours in partition B
 - All vertices in partition B exchange ids

- The partitioning algorithm needs to maximize number of vertices that have all their edges in the same partition
- Hash partitioning is not suitable because many vertices will probably have at least one cut-edge
- URL partitioner
 - For web graphs: based on domain names of web page nodes
- 2D partitioner
 - For spatial networks: based on coordinates of node
- Graph Voronoi diagram partitioner
 - For general graphs

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

• For data analysis of very large data sets

- Highly dynamic, irregular, schemaless, etc.
- SQL too heavy
- "Embarrassingly parallel problems"
- New, simple parallel programming model
 - Data structured as (key, value) pairs
 - E.g. (doc-id, content), (word, count), etc.
 - Functional programming style with two functions to be given:
 - Map(k1,v1) \rightarrow list(k2,v2)
 - Reduce(k2, list (v2)) \rightarrow list(v3)
- Implemented on a distributed file system (e.g., Google File System) on very large clusters

MapReduce Processing

MapReduce Architecture

Execution Flow with Architecture

41 / 59

Hadoop

- Most popular MapReduce implementation developed by Yahoo!
- Two components
 - Processing engine
 - HDFS: Hadoop Distributed Storage System others possible
 - Can be deployed on the same machine or on different machines
- Processes

(c) M. Tamer Özsu

- Job tracker: hosted on the master node and implements the schedule
- Task tracker: hosted on the worker nodes and accepts tasks from job tracker and executes them
- HDFS
 - Name node: stores how data are partitioned, monitors the status of data nodes, and data dictionary
 - Data node: Stores and manages data chunks assigned to it

- Overcome MapReduce shortcomings for iterative jobs
 - Having to save data in HDFS in between each iteration
 - Checking the fixpoint requires a new job at each iteration
- Scheduler change: assign to the same machine the map & reduce tasks that occur in different iterations but access the same data
- Cache invariant data
- Cache reduce output to easily check for fixpoint

Outline

Introduction – Graph Types

Property Graph Processing

- Classification
- Online querying
- Offline analytics

3 Graph Analytics Computational Models

- Vertex-Centric
- Block-Centric
- MapReduce-Based
- Modified MapReduce

MapReduce does not perform well in iterative computations

- Workflow model is acyclic
- Have to write to HDFS after each iteration and have to read from HDFS at the beginning of next iteration

MapReduce does not perform well in iterative computations

- Workflow model is acyclic
- Have to write to HDFS after each iteration and have to read from HDFS at the beginning of next iteration
- Spark objectives
 - Better support for iterative programs
 - Provide a complete ecosystem
 - Similar abstraction (to MapReduce) for programming
 - Maintain MapReduce fault-tolerance and scalability

MapReduce does not perform well in iterative computations

- Workflow model is acyclic
- Have to write to HDFS after each iteration and have to read from HDFS at the beginning of next iteration
- Spark objectives
 - Better support for iterative programs
 - Provide a complete ecosystem
 - Similar abstraction (to MapReduce) for programming
 - Maintain MapReduce fault-tolerance and scalability
- Fundamental concepts
 - RDD: Reliable Distributed Datasets
 - Caching of working set
 - Maintaining lineage for fault-tolerance

(c) M. Tamer Özsu

© M. Tamer Özsu

Example – Log Mining

Load log messages from a file system, create a new file by filtering the error messages, read this file into memory, then interactively search for various patterns


```
lines = spark.textFile(hdfs://...) /
```



```
lines = spark.textFile(hdfs://...)
errors = lines.filter(_.starts Cache results
messages = errors.map(_.split(_____(2))
cachedMsgs = messages.cache()
```


RDD and Processing

RDD and Processing

GraphX

- Built on top of Spark
- Objective is to combine data analytics with graph processing
 - Unify computation on tables and graphs
- Carefully convert graph to tabular representation
- Native GraphX API or can accommodate vertex-centric computation

Edge-disjoint partitioning

© M. Tamer Özsu

GraphX: Computation Model

GraphX: Computation Model

GraphX: Computation Model

GraphX: Operators

• Table transform operators – inherited from Spark

map(func)	Return a new RDD formed by passing each element
	of the source through a function func
filter(<i>func</i>)	Return a new RDD formed by selecting those
	elements of the source on which func returns true
flatMap(func)	Similar to map, but each input item can be mapped
	to 0 or more output items
mapPartitions(func)	Similar to map, but runs separately on each partition
	(block) of the RDD, so <i>func</i> must be of type Iterator
sample(<i>repl</i> , <i>fraction</i> ,	Sample a fraction <i>fraction</i> of the data, with or
seed)	without replacement (set repl accordingly), using a
	given random number generator seed
union(<i>otherDataset</i>)	Return a new RDD containing the union/intersection
intersection()	of the elements in the source RDD and the argument
groupByKey()	Operates on a RDD of (K, V) pairs, returns a RDD
	of (K, Iterable <v>) pairs</v>
reduceByKey(func,)	Operates on a RDD of (K, V) pairs, returns a RDD
	of (K, V) pairs where the values for each key are
	aggregated using the given reduce function func

GraphX: Operators

- Table transform operators inherited from Spark
- Graph operators

Graph(vertex coll,	Logically binds together a pair of vertex and edge
edge coll)	property collections into a property graph; verifies
	that each vertex occurs only once and edges connect
	existing vertices
triplets(<i>vertex coll</i> ,	Returns the triplets view of the graph
vertex coll, edge coll)	
mrTriplets(map,reduce)	MapReduce triplets - encodes the two-stage process
	of join to create triplets and group by

This presentation draws upon collaborative research and discussions with the following colleagues

Khaled Ammar, U. Waterloo

Khuzaima Daudjee, U. Waterloo

Young Han, U. Waterloo

Thank you!

Research supported by

CANADA FOUNDATION FOR INNOVATION FONDATION CANADIENNE POUR L'INNOVATION

MINISTRY OF RESEARCH AND INNOVATION MINISTÈRE DE LA RECHERCHE ET DE L'INNOVATION

(c) M. Tamer Özsu

- Ammar, K. and Özsu, M. T. (2016). Approaches to graph processing an overview. In preparation.
- Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012). The HaLoop approach to large-scale iterative data analysis. *VLDB J.*, 21(2):169–190.
- Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clusters. Commun. ACM, 51(1):107–113.
- Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I.
 (2014). GraphX: graph processing in a distributed dataflow framework. In *Proc. 11th* USENIX Symp. on Operating System Design and Implementation, pages 599–613.
- Han, M., Daudjee, K., Ammar, K., Özsu, M. T., Wang, X., and Jin, T. (2014). An experimental comparison of Pregel-like graph processing systems. *Proc. VLDB Endowment*, 7(12):1047–1058.
- Li, F., Ooi, B. C., Özsu, M. T., and Wu, S. (2014). Distributed data management using MapReduce. *ACM Comput. Surv.*, 46(3):Article No. 31.
- Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M. (2012). Distributed graphlab: A framework for machine learning in the cloud. *Proc. VLDB Endowment*, 5(8):716–727.

References II

- Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. In *Proc.* ACM SIGMOD Int. Conf. on Management of Data, pages 135–146.
- Michiardi, P. (2015). Introduction to spark internals. Slideshare. Available from: http://www.slideshare.net/michiard/introduction-to-spark-internals? qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf1&b=&from_search=11 [Last retrieved: 9 July 2015].
- Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013). From "think like a vertex" to "think like a graph". *Proc. VLDB Endowment*, 7(3):193–204.
- Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for distributed computation on real-world graphs. *Proc. VLDB Endowment*, 7(14):1981–1992.
- Zaharia, M. (2016). An Architecture for Fast and General Data Processing on Large Clusters. ACM Books. Forthcoming.
- Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S., and Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In *Proc. 9th USENIX Symp. on Networked Systems Design & Implementation*, pages 2–2.

References III

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark: Cluster computing with working sets. In *Proc. 2nd USENIX Workshop on Hot Topics in Cloud Computing*, pages 10–10.