
An Introduction to Graph Analytics Platforms

M. Tamer Özsu

University of Waterloo
David R. Cheriton School of Computer Science

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 1 / 59

Graph Data are Very Common

Internet

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 2 / 59

Graph Data are Very Common

Social
networks

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 2 / 59

Graph Data are Very Common

Trade volumes
and

connections

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 2 / 59

Graph Data are Very Common

Biological
networks

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 2 / 59

Graph Data are Very Common

As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

Linked data

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 2 / 59

Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 3 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 4 / 59

Graph Types

Property graph

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)

books 0743424425
(rating, 4.7)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447) actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 5 / 59

Graph Types

RDF graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 5 / 59

Graph Types

Property graph

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)

books 0743424425
(rating, 4.7)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447) actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Workload: Online queries and
analytic workloads

Query execution: Varies

RDF graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Workload: SPARQL queries

Query execution: subgraph
matching by homomorphism

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 5 / 59

RDF Introduction

Everything is an uniquely named
resource

Prefixes can be used to shorten the
names

Properties of resources can be defined

Relationships with other resources can
be defined

Resource descriptions can be
contributed by different people/groups
and can be located anywhere in the web

Integrated web “database”

http://data.linkedmdb.org/resource/actor/JN29704

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704

y:JN29704:hasName “Jack Nicholson”

y:JN29704:BornOnDate “1937-04-22”

y:TS2014:title “The Shining”

y:TS2014:releaseDate “1980-05-23”

y:TS2014

JN29704:movieActor

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 6 / 59

RDF Introduction

Everything is an uniquely named
resource

Prefixes can be used to shorten the
names

Properties of resources can be defined

Relationships with other resources can
be defined

Resource descriptions can be
contributed by different people/groups
and can be located anywhere in the web

Integrated web “database”

http://data.linkedmdb.org/resource/actor/JN29704

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704

y:JN29704:hasName “Jack Nicholson”

y:JN29704:BornOnDate “1937-04-22”

y:TS2014:title “The Shining”

y:TS2014:releaseDate “1980-05-23”

y:TS2014

JN29704:movieActor

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 6 / 59

RDF Introduction

Everything is an uniquely named
resource

Prefixes can be used to shorten the
names

Properties of resources can be defined

Relationships with other resources can
be defined

Resource descriptions can be
contributed by different people/groups
and can be located anywhere in the web

Integrated web “database”

http://data.linkedmdb.org/resource/actor/JN29704

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704

y:JN29704:hasName “Jack Nicholson”

y:JN29704:BornOnDate “1937-04-22”

y:TS2014:title “The Shining”

y:TS2014:releaseDate “1980-05-23”

y:TS2014

JN29704:movieActor

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 6 / 59

RDF Introduction

Everything is an uniquely named
resource

Prefixes can be used to shorten the
names

Properties of resources can be defined

Relationships with other resources can
be defined

Resource descriptions can be
contributed by different people/groups
and can be located anywhere in the web

Integrated web “database”

http://data.linkedmdb.org/resource/actor/JN29704

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704

y:JN29704:hasName “Jack Nicholson”

y:JN29704:BornOnDate “1937-04-22”

y:TS2014:title “The Shining”

y:TS2014:releaseDate “1980-05-23”

y:TS2014

JN29704:movieActor

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 6 / 59

RDF Introduction

Everything is an uniquely named
resource

Prefixes can be used to shorten the
names

Properties of resources can be defined

Relationships with other resources can
be defined

Resource descriptions can be
contributed by different people/groups
and can be located anywhere in the web

Integrated web “database”

http://data.linkedmdb.org/resource/actor/JN29704

xmlns:y=http://data.linkedmdb.org/resource/actor/

y:JN29704

y:JN29704:hasName “Jack Nicholson”

y:JN29704:BornOnDate “1937-04-22”

y:TS2014:title “The Shining”

y:TS2014:releaseDate “1980-05-23”

y:TS2014

JN29704:movieActor

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 6 / 59

RDF Data Model

Triple: Subject, Predicate (Property), Object
(s, p, o)

Subject: the entity that is described (URI
or blank node)

Predicate: a feature of the entity (URI)
Object: value of the feature (URI, blank

node or literal)

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L)

Set of RDF triples is called an RDF graph

U

Subject Object

U B U B L

U: set of URIs
B: set of blank nodes
L: set of literals

Predicate

Subject Predicate Object
http://...imdb.../film/2014 rdfs:label “The Shining”
http://...imdb.../film/2014 movie:releaseDate “1980-05-23”
http://...imdb.../29704 movie:actor name “Jack Nicholson”
.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 7 / 59

RDF Example Instance
Prefixes: mdb=http://data.linkedmdb.org/resource/; geo=http://sws.geonames.org/

bm=http://wifo5-03.informatik.uni-mannheim.de/bookmashup/
lexvo=http://lexvo.org/id/;wp=http://en.wikipedia.org/wiki/

Subject Predicate Object

mdb: film/2014 rdfs:label “The Shining”
mdb:film/2014 movie:initial release date “1980-05-23”’
mdb:film/2014 movie:director mdb:director/8476
mdb:film/2014 movie:actor mdb:actor/29704
mdb:film/2014 movie:actor mdb: actor/30013
mdb:film/2014 movie:music contributor mdb: music contributor/4110
mdb:film/2014 foaf:based near geo:2635167
mdb:film/2014 movie:relatedBook bm:0743424425
mdb:film/2014 movie:language lexvo:iso639-3/eng
mdb:director/8476 movie:director name “Stanley Kubrick”
mdb:film/2685 movie:director mdb:director/8476
mdb:film/2685 rdfs:label “A Clockwork Orange”
mdb:film/424 movie:director mdb:director/8476
mdb:film/424 rdfs:label “Spartacus”
mdb:actor/29704 movie:actor name “Jack Nicholson”
mdb:film/1267 movie:actor mdb:actor/29704
mdb:film/1267 rdfs:label “The Last Tycoon”
mdb:film/3418 movie:actor mdb:actor/29704
mdb:film/3418 rdfs:label “The Passenger”
geo:2635167 gn:name “United Kingdom”
geo:2635167 gn:population 62348447
geo:2635167 gn:wikipediaArticle wp:United Kingdom
bm:books/0743424425 dc:creator bm:persons/Stephen+King
bm:books/0743424425 rev:rating 4.7
bm:books/0743424425 scom:hasOffer bm:offers/0743424425amazonOffer
lexvo:iso639-3/eng rdfs:label “English”
lexvo:iso639-3/eng lvont:usedIn lexvo:iso3166/CA
lexvo:iso639-3/eng lvont:usesScript lexvo:script/Latn

URI Literal

URI

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 8 / 59

RDF Graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 9 / 59

RDF Query Model – SPARQL

Query Model - SPARQL Protocol and RDF Query Language
Given U (set of URIs), L (set of literals), and V (set of variables), a
SPARQL expression is defined recursively:

an atomic triple pattern, which is an element of

(U ∪ V)× (U ∪ V)× (U ∪ V ∪ L)

?x rdfs:label “The Shining”

P FILTER R, where P is a graph pattern expression and R is a built-in
SPARQL condition (i.e., analogous to a SQL predicate)

?x rev:rating ?p FILTER(?p > 3.0)

P1 AND/OPT/UNION P2, where P1 and P2 are graph pattern
expressions

Example:
SELECT ?name
WHERE {

?m r d f s : l a b e l ?name . ?m movie : d i r e c t o r ?d .
?d movie : d i r e c t o r n a m e ” S t a n l e y K u b r i c k ” .
?m movie : r e l a t e d B o o k ?b . ?b r e v : r a t i n g ? r .
FILTER(? r > 4 . 0)

}
© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 10 / 59

SPARQL Queries

SELECT ?name
WHERE {

?m r d f s : l a b e l ?name . ?m movie : d i r e c t o r ?d .
?d movie : d i r e c t o r n a m e ” S t a n l e y K u b r i c k ” .
?m movie : r e l a t e d B o o k ?b . ?b r e v : r a t i n g ? r .
FILTER(? r > 4 . 0)

}

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 11 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 12 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 13 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Focus here is on the

dynamism of the

graphs in whether or

not they change and

how they change.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Focus here is on the

dynamism of the

graphs in whether or

not they change and

how they change.

Focus here is on how

algorithms behave as

their input changes.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Focus here is on the

dynamism of the

graphs in whether or

not they change and

how they change.

Focus here is on how

algorithms behave as

their input changes.

The types of workloads

that the approaches are

designed to handle.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Graphs do not

change or we

are not inter-

ested in their

changes – only

a snapshot is

considered.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Graphs do not

change or we

are not inter-

ested in their

changes – only

a snapshot is

considered.

Graphs change

and we are

interested in

their changes.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Graphs do not

change or we

are not inter-

ested in their

changes – only

a snapshot is

considered.

Graphs change

and we are

interested in

their changes.

Dynamic

graphs with

high veloc-

ity changes –

not possible to

see the entire

graph at once.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Graphs do not

change or we

are not inter-

ested in their

changes – only

a snapshot is

considered.

Graphs change

and we are

interested in

their changes.

Dynamic

graphs with

high veloc-

ity changes –

not possible to

see the entire

graph at once.

Dynamic

graphs with un-

known changes

– requires re-

discovery of

the graph (e.g.,

LOD).

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Computation accesses a

portion of the graph

and the results are

computed for a subset

of vertices; e.g., point-

to-point shortest path,

subgraph matching,

reachability, SPARQL.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Computation accesses a

portion of the graph

and the results are

computed for a subset

of vertices; e.g., point-

to-point shortest path,

subgraph matching,

reachability, SPARQL.

Computation accesses

the entire graph and

may require multiple

iterations; e.g., PageR-

ank, clustering, graph

colouring, all pairs

shortest path.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Sees the en-

tire input in

advance.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Sees the en-

tire input in

advance.

Sees the input

piece-meal as it

executes.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Sees the en-

tire input in

advance.

Sees the input

piece-meal as it

executes.

One-pass on-

line algorithm

with limited

memory.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Sees the en-

tire input in

advance.

Sees the input

piece-meal as it

executes.

One-pass on-

line algorithm

with limited

memory.

Online algo-

rithm with

some info

about forth-

coming input.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Sees the en-

tire input in

advance.

Sees the input

piece-meal as it

executes.

One-pass on-

line algorithm

with limited

memory.

Online algo-

rithm with

some info

about forth-

coming input.

Sees the en-

tire input

in advance,

which may

change; an-

swers computed

as change oc-

curs.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Classification [Ammar and Özsu, 2016]

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Sees the en-

tire input in

advance.

Sees the input

piece-meal as it

executes.

One-pass on-

line algorithm

with limited

memory.

Online algo-

rithm with

some info

about forth-

coming input.

Sees the en-

tire input

in advance,

which may

change; an-

swers computed

as change oc-

curs.

Similar to dynamic,

but computation

happens in batches

of changes.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 14 / 59

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation over the graph
as it exists.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 15 / 59

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation over the graph
as it is revealed.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 15 / 59

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation on each snap-
shot from scratch.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 15 / 59

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Continuously compute the query result/perform analytic computation as
the input changes.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 15 / 59

Example Design Points

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result/perform analytic computation after a batch of
input changes.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 15 / 59

Example Design Points – Not all alternatives make sense

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Evolving
Graphs

Algorithm Types

Offline Online

Streaming Incremental

Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Dynamic (or batch-dynamic) algorithms do not make sense for static
graphs.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 16 / 59

Graph Processing Systems

System Memory/
Disk

Architecture
Computing
paradigm

Supported
Workloads

Hadoop Disk Parallel/Distributed MapReduce Analytical

Haloop Disk Parallel/Distributed MapReduce Analytical

Pegasus Disk Parallel/Distributed MapReduce Analytical

GraphX Disk Parallel/Distributed
MapReduce

(Spark)
Analytical

Pregel/Giraph Memory Parallel/Distributed Vertex-Centric Analytical

GraphLab Memory Parallel/Distributed Vertex-Centric Analytical

GraphChi Disk Single machine Vertex-Centric Analytical

Stream Disk Single machine Edge-Centric Analytical

Trinity Memory Parallel/Distributed
Flexible using K-V

store on DSM
Online &
Analytical

Titan Disk Parallel/Distributed
K-V store

(Cassandra)
Online

Neo4J Disk Single machine
Procedural/
Linked-list

Online

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 17 / 59

Graph Workloads

Online graph querying

Reachability

Single source shortest-path

Subgraph matching

SPARQL queries

Offline graph analytics

PageRank

Clustering

Strongly connected
components

Diameter finding

Graph colouring

All pairs shortest path

Graph pattern mining

Machine learning algorithms
(Belief propagation, Gaussian
non-negative matrix
factorization)

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 18 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 19 / 59

Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)

books 0743424425
(rating, 4.7)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447) actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 20 / 59

Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)

books 0743424425
(rating, 4.7)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447) actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Can you reach film 1267 from film 2014?

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 20 / 59

Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)

books 0743424425
(rating, 4.7)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447) actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Is there a book whose rating is > 4.0 associated with a film that was
directed by Stanley Kubrick?

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 20 / 59

Reachability Queries

Think of Facebook graph and finding friends of friends.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 20 / 59

Subgraph Matching

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Subgraph
M

atching

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 21 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 22 / 59

PageRank Computation

A web page is important if it is pointed to by other important
pages.

P1 P2

P3

P5P6

P4

r(Pi) =
∑

Pj∈BPi

r(Pj)

|FPj
|

r(P2) =
r(P1)

2
+

r(P3)

3

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)

|FPj
|

BPi
: in-neighbours of Pi

FPi
: out-neighbours of Pi

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 23 / 59

PageRank Computation

A web page is important if it is pointed to by other important
pages.

P1 P2

P3

P5P6

P4

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)

|FPj
|

Iteration 0 Iteration 1 Iteration 2
Rank at
Iter. 2

r0(P1) = 1/6 r1(P1) = 1/18 r2(P1) = 1/36 5
r0(P2) = 1/6 r1(P2) = 5/36 r2(P2) = 1/18 4
r0(P3) = 1/6 r1(P3) = 1/12 r2(P3) = 1/36 5
r0(P4) = 1/6 r1(P4) = 1/4 r2(P4) = 17/72 1
r0(P5) = 1/6 r1(P5) = 5/36 r2(P5) = 11/72 3
r0(P6) = 1/6 r1(P6) = 1/6 r2(P6) = 14/72 2

Iterative processing.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 23 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 24 / 59

Some Alternative Computational Models for Offline
Analytics

Vertex-centric (Scatter-Gather)
Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
Synchronous – Pregel [Malewicz et al., 2010], Giraph
Asynchronous – GraphLab [Low et al., 2012]

Block-centric
Similar to vertex-centric but on blocks for communication

Connected subgraph of the graph

Blogel [Yan et al., 2014]
MapReduce

Need to save in HDFS intermediate results of each iteration – both
good and bad
Hadoop, Haloop [Bu et al., 2012]

Modified MapReduce
Based on Spark [Zaharia et al., 2010; Zaharia, 2016]

Keep intermediate states in memory
Provide fault-tolerance by keeping lineage

GraphX [Gonzalez et al., 2014]

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 25 / 59

Some Alternative Computational Models for Offline
Analytics

Vertex-centric (Scatter-Gather)
Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
Synchronous – Pregel [Malewicz et al., 2010], Giraph
Asynchronous – GraphLab [Low et al., 2012]

Block-centric
Similar to vertex-centric but on blocks for communication

Connected subgraph of the graph

Blogel [Yan et al., 2014]

MapReduce
Need to save in HDFS intermediate results of each iteration – both
good and bad
Hadoop, Haloop [Bu et al., 2012]

Modified MapReduce
Based on Spark [Zaharia et al., 2010; Zaharia, 2016]

Keep intermediate states in memory
Provide fault-tolerance by keeping lineage

GraphX [Gonzalez et al., 2014]

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 25 / 59

Some Alternative Computational Models for Offline
Analytics

Vertex-centric (Scatter-Gather)
Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
Synchronous – Pregel [Malewicz et al., 2010], Giraph
Asynchronous – GraphLab [Low et al., 2012]

Block-centric
Similar to vertex-centric but on blocks for communication

Connected subgraph of the graph

Blogel [Yan et al., 2014]
MapReduce

Need to save in HDFS intermediate results of each iteration – both
good and bad
Hadoop, Haloop [Bu et al., 2012]

Modified MapReduce
Based on Spark [Zaharia et al., 2010; Zaharia, 2016]

Keep intermediate states in memory
Provide fault-tolerance by keeping lineage

GraphX [Gonzalez et al., 2014]

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 25 / 59

Some Alternative Computational Models for Offline
Analytics

Vertex-centric (Scatter-Gather)
Specify (a) computation at each vertex, and (b) communication with
neighbour vertices
Synchronous – Pregel [Malewicz et al., 2010], Giraph
Asynchronous – GraphLab [Low et al., 2012]

Block-centric
Similar to vertex-centric but on blocks for communication

Connected subgraph of the graph

Blogel [Yan et al., 2014]
MapReduce

Need to save in HDFS intermediate results of each iteration – both
good and bad
Hadoop, Haloop [Bu et al., 2012]

Modified MapReduce
Based on Spark [Zaharia et al., 2010; Zaharia, 2016]

Keep intermediate states in memory
Provide fault-tolerance by keeping lineage

GraphX [Gonzalez et al., 2014]

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 25 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 26 / 59

Vertex-Centric Computation

“Think like a vertex”

vertex_scatter(vertex v)

Push local computation to
neighbours on the out-bound
edges

vertex_gather(vertex v)

Gather local computation from
neighbours on the in-bound edges

Continue until all vertices are
inactive

Vertex state machine

?

Active Inactive

Vote halt

Message received

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 27 / 59

Vertex-Centric Computation

“Think like a vertex”

vertex_scatter(vertex v)

Push local computation to
neighbours on the out-bound
edges

vertex_gather(vertex v)

Gather local computation from
neighbours on the in-bound edges

Continue until all vertices are
inactive

Vertex state machine

?

Active Inactive

Vote halt

Message received

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 27 / 59

Synchronous Vertex-Centric Computation

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
vertex-centric computation
on its graph partition

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 28 / 59

Synchronous Vertex-Centric Computation

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
vertex-centric computation
on its graph partition

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 28 / 59

Synchronous Vertex-Centric Computation

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
vertex-centric computation
on its graph partition

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 28 / 59

Synchronous Vertex-Centric Computation

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
vertex-centric computation
on its graph partition

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 28 / 59

Synchronous Vertex-Centric Computation

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
vertex-centric computation
on its graph partition

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Computation

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 28 / 59

Asynchronous Vertex-Centric Computation

No communication barriers. 3

Uses the most recent vertex values. 3

Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 29 / 59

Asynchronous Vertex-Centric Computation

No communication barriers. 3

Uses the most recent vertex values. 3

Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 29 / 59

Asynchronous Vertex-Centric Computation

No communication barriers. 3

Uses the most recent vertex values. 3

Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 29 / 59

Asynchronous Vertex-Centric Computation

No communication barriers. 3

Uses the most recent vertex values. 3

Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 29 / 59

Asynchronous Vertex-Centric Computation

No communication barriers. 3

Uses the most recent vertex values. 3

Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 29 / 59

Asynchronous Vertex-Centric Computation

No communication barriers. 3

Uses the most recent vertex values. 3

Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

v0

v1 v2

v3 v4

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 29 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

1 Giraph scales better across graphs;
GraphLab scales better across more machines.

2 Distributed locking for asynchronous execution is not scalable –
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.

4 Message processing optimizations are very important.

5 Workloads have different resource demands

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

1 Giraph scales better across graphs;
GraphLab scales better across more machines.

2 Distributed locking for asynchronous execution is not scalable –
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.

4 Message processing optimizations are very important.

5 Workloads have different resource demands

64 machines TW UK

Giraph (byte array) 5.8GB 7.0GB
GraphLab (sync) 4.5GB 14GB

TW 16 machines 128 machines

Giraph (byte array) 8.5GB 5.8GB
GraphLab (sync) 11GB 3.3GB

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

1 Giraph scales better across graphs;
GraphLab scales better across more machines.

2 Distributed locking for asynchronous execution is not scalable –
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.

4 Message processing optimizations are very important.

5 Workloads have different resource demands

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

1 Giraph scales better across graphs;
GraphLab scales better across more machines.

2 Distributed locking for asynchronous execution is not scalable –
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.

4 Message processing optimizations are very important.

5 Workloads have different resource demands

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

1 Giraph scales better across graphs;
GraphLab scales better across more machines.

2 Distributed locking for asynchronous execution is not scalable –
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.

4 Message processing optimizations are very important.

5 Workloads have different resource demands

No Mutations

Time Memory

Byte array 3 3
Hash map 7 7

With Mutations (DMST)

Time Memory

Byte array 77 3
Hash map 3 7

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.

1 Giraph scales better across graphs;
GraphLab scales better across more machines.

2 Distributed locking for asynchronous execution is not scalable –
Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.

4 Message processing optimizations are very important.

5 Workloads have different resource demands

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Summary of an Experiment [Han et al., 2014]

A large study comparing Giraph, GraphLab, GPS, Mizan.
1 Giraph scales better across graphs;

GraphLab scales better across more machines.
2 Distributed locking for asynchronous execution is not scalable –

Performance degrades as more machines are used due to lock
contention, termination scheme, lack of message batching

3 Graph storage should be memory and mutation efficient.
4 Message processing optimizations are very important.
5 Workloads have different resource demands

Algorithm CPU Memory Network

PageRank Medium Medium High
SSSP Low Low Low
WCC Low Medium Medium
DMST High High Medium

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 30 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 31 / 59

Block-Centric Computation

Blogel [Yan et al., 2014]: “Think like a block”; also “think like a
graph” [Tian et al., 2013]

Vertex-centric assumes all vertices communicate over the network;
this is not efficient

Read-world graphs have skewed vertex degree distribution

Common in power-law graphs
Problem: imbalanced communication workloads

Real-world graphs have large diameters

Common in road networks, web graphs, terrain meshes
Problem: one superstep per hop ⇒ too many supersteps

Real-world graphs have high average vertex degree

Common in social networks, mobile communication networks
Problem: heavy average communication workloads

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 32 / 59

Blogel Principles

Exploit the partitioning of the graph

Message exchanges only among blocks

Block: a connected subgraph of the graph

Within a block, run a serial in-memory algorithm; no need to follow a
BSP model

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 33 / 59

Benefits of Block-Centric Computation

High-degree vertices inside a block send no messages

Fewer number of supersteps

Fewer number of blocks than vertices

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 34 / 59

Example: Weakly Connected Component

Algorithm exchanges vertex id’s
with neighbours

id(vi)← min{vi , vj , . . . , vk}
where vj , . . . , vk are neighbours
of vi

Vertex-centric requires every
vertex sends to its neighbours
until every vertex is reached

Block-centric needs two
iterations:

1 All vertices in partition A
exchange ids; X and Y send
ids to neighbours in partition
B

2 All vertices in partition B
exchange ids

A B

0

X

Y

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 35 / 59

Block Construction

The partitioning algorithm needs to maximize number of vertices that
have all their edges in the same partition

Hash partitioning is not suitable because many vertices will probably
have at least one cut-edge

URL partitioner

For web graphs: based on domain names of web page nodes

2D partitioner

For spatial networks: based on coordinates of node

Graph Voronoi diagram partitioner

For general graphs

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 36 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 37 / 59

MapReduce Basics [Li et al., 2014]

For data analysis of very large data sets

Highly dynamic, irregular, schemaless, etc.
SQL too heavy

“Embarrassingly parallel problems”

New, simple parallel programming model
Data structured as (key, value) pairs

E.g. (doc-id, content), (word, count), etc.

Functional programming style with two functions to be given:

Map(k1,v1) → list(k2,v2)

Reduce(k2, list (v2)) → list(v3)

Implemented on a distributed file system (e.g., Google File System)
on very large clusters

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 38 / 59

MapReduce Processing

...In
p

u
t

d
at

a
se

t

Map

Map

Map

Map

(k1, v)

(k2, v)
(k2, v)

(k2, v)

(k1, v)

(k1, v)

(k2, v)

Group by k

Group by k

(k1, (v , v , v))

(k1, (v , v , v , v)) Reduce

Reduce

O
u

tp
u

t
d

at
a

se
t

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 39 / 59

MapReduce Architecture

Scheduler

Master

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Group Module

Reduce Module

Output Module

Reduce Process

Worker

Group Module

Reduce Module

Output Module

Reduce Process

Worker

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 40 / 59

Execution Flow with Architecture [Dean and Ghemawat, 2008]
MapReduce: Simplified Data Processing on Large Clusters

7. When all map tasks and reduce tasks have been completed, the mas-
ter wakes up the user program. At this point, the MapReduce call
in the user program returns back to the user code.

After successful completion, the output of the mapreduce execution
is available in the R output files (one per reduce task, with file names
specified by the user). Typically, users do not need to combine these R
output files into one file; they often pass these files as input to another
MapReduce call or use them from another distributed application that
is able to deal with input that is partitioned into multiple files.

3.2 Master Data Structures
The master keeps several data structures. For each map task and
reduce task, it stores the state (idle, in-progress, or completed) and the
identity of the worker machine (for nonidle tasks).

The master is the conduit through which the location of interme-
diate file regions is propagated from map tasks to reduce tasks. There -
fore, for each completed map task, the master stores the locations and
sizes of the R intermediate file regions produced by the map task.
Updates to this location and size information are received as map tasks
are completed. The information is pushed incrementally to workers
that have in-progress reduce tasks.

3.3 Fault Tolerance
Since the MapReduce library is designed to help process very large
amounts of data using hundreds or thousands of machines, the library
must tolerate machine failures gracefully.

Handling Worker Failures
The master pings every worker periodically. If no response is received
from a worker in a certain amount of time, the master marks the worker
as failed. Any map tasks completed by the worker are reset back to their
initial idle state and therefore become eligible for scheduling on other
workers. Similarly, any map task or reduce task in progress on a failed
worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are reexecuted on a failure because their out-
put is stored on the local disk(s) of the failed machine and is therefore
inaccessible. Completed reduce tasks do not need to be reexecuted
since their output is stored in a global file system.

When a map task is executed first by worker A and then later exe-
cuted by worker B (because A failed), all workers executing reduce
tasks are notified of the reexecution. Any reduce task that has not
already read the data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures. For example,
during one MapReduce operation, network maintenance on a running
cluster was causing groups of 80 machines at a time to become unreach-
able for several minutes. The MapReduce master simply re executed the
work done by the unreachable worker machines and continued to make
forward progress, eventually completing the MapReduce operation.

Semantics in the Presence of Failures
When the user-supplied map and reduce operators are deterministic
functions of their input values, our distributed implementation pro-
duces the same output as would have been produced by a nonfaulting
sequential execution of the entire program.

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) remote

(5) read

Input
files

Map
phasr

Intermediate files
(on local disks)

Reduce
phase

Output
files

Fig. 1. Execution overview.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 109

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 41 / 59

Hadoop

Most popular MapReduce implementation – developed by Yahoo!
Two components

Processing engine
HDFS: Hadoop Distributed Storage System – others possible
Can be deployed on the same machine or on different machines

Processes
Job tracker: hosted on the master node and implements the schedule
Task tracker: hosted on the worker nodes and accepts tasks from job tracker
and executes them

HDFS
Name node: stores how data are partitioned, monitors the status of data
nodes, and data dictionary
Data node: Stores and manages data chunks assigned to it

Task Tracker Job Tracker Task Tracker

Data Node Name Node Data Node

Worker 1 Name Node Worker n

MapReduce

HDFS

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 42 / 59

HaLoop [Bu et al., 2012]

Overcome MapReduce shortcomings for iterative jobs

Having to save data in HDFS in between each iteration
Checking the fixpoint requires a new job at each iteration

Scheduler change: assign to the same machine the map & reduce
tasks that occur in different iterations but access the same data

Cache invariant data

Cache reduce output to easily check for fixpoint

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 43 / 59

Outline

1 Introduction – Graph Types

2 Property Graph Processing
Classification
Online querying
Offline analytics

3 Graph Analytics Computational Models
Vertex-Centric
Block-Centric
MapReduce-Based
Modified MapReduce

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 44 / 59

Spark System

MapReduce does not perform well in iterative computations

Workflow model is acyclic
Have to write to HDFS after each iteration and have to read from
HDFS at the beginning of next iteration

Spark objectives

Better support for iterative programs
Provide a complete ecosystem
Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

Fundamental concepts

RDD: Reliable Distributed Datasets
Caching of working set
Maintaining lineage for fault-tolerance

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 45 / 59

Spark System

MapReduce does not perform well in iterative computations

Workflow model is acyclic
Have to write to HDFS after each iteration and have to read from
HDFS at the beginning of next iteration

Spark objectives

Better support for iterative programs
Provide a complete ecosystem
Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

Fundamental concepts

RDD: Reliable Distributed Datasets
Caching of working set
Maintaining lineage for fault-tolerance

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 45 / 59

Spark System

MapReduce does not perform well in iterative computations

Workflow model is acyclic
Have to write to HDFS after each iteration and have to read from
HDFS at the beginning of next iteration

Spark objectives

Better support for iterative programs
Provide a complete ecosystem
Similar abstraction (to MapReduce) for programming
Maintain MapReduce fault-tolerance and scalability

Fundamental concepts

RDD: Reliable Distributed Datasets
Caching of working set
Maintaining lineage for fault-tolerance

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 45 / 59

Spark Ecosystem [Michiardi, 2015]

Native
Spark
Apps

Spark
SQL

Spark
Streaming

MLlib
(machine
learning)

GraphX
(graph

processing)

Apache Spark

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 46 / 59

Spark Programming Model [Zaharia et al., 2010, 2012]

HDFS

Create RDD

· · ·

RDD

Cache? Cache
Yes

Transform
RDD?

No

Process

No

Transform
Yes

HDFS

Each transform generates a
new RDD that may also be
cached or processed

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Processing done on one of the RDDs;
Done in parallel across workers;
First processing on a RDD is from disk;
Subsequent processing of the same RDD from cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 47 / 59

Spark Programming Model [Zaharia et al., 2010, 2012]

HDFS

Create RDD

· · ·

RDD

Cache? Cache
Yes

Transform
RDD?

No

Process

No

Transform
Yes

HDFS

Each transform generates a
new RDD that may also be
cached or processed

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Processing done on one of the RDDs;
Done in parallel across workers;
First processing on a RDD is from disk;
Subsequent processing of the same RDD from cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 47 / 59

Spark Programming Model [Zaharia et al., 2010, 2012]

HDFS

Create RDD

· · ·

RDD

Cache? Cache
Yes

Transform
RDD?

No

Process

No

Transform
Yes

HDFS

Each transform generates a
new RDD that may also be
cached or processed

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Processing done on one of the RDDs;
Done in parallel across workers;
First processing on a RDD is from disk;
Subsequent processing of the same RDD from cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 47 / 59

Spark Programming Model [Zaharia et al., 2010, 2012]

HDFS

Create RDD

· · ·

RDD

Cache? Cache
Yes

Transform
RDD?

No

Process

No

Transform
Yes

HDFS

Each transform generates a
new RDD that may also be
cached or processed

Created from HDFS or parallelized arrays;
Partitioned across worker machines;
May be made persistent lazily;

Processing done on one of the RDDs;
Done in parallel across workers;
First processing on a RDD is from disk;
Subsequent processing of the same RDD from cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 47 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns

lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

Tasks

Results

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

Example – Log Mining [Zaharia et al., 2010, 2012]

Load log messages from a file system, create a new file by filtering the
error messages, read this file into memory, then interactively search for
various patterns
lines = spark.textFile(hdfs://...)

CreateRDD

errors = lines.filter(.startsWith(ERROR))

Transform RDD

messages = errors.map(.split(‘\t ’)(2))

Another transform

cachedMsgs = messages.cache()

Cache results

cachedMsgs.filter(.contains(foo)).count

Action

cachedMsgs.filter(.contains(bar)).count

Another Action

accesses cache

Driver

WorkerWorkerWorker

Block 1 Block 2 Block 3

TasksResults

Cache Cache Cache

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 48 / 59

RDD and Processing

HDFS

lines = spark.textFile(hdfs://...)

lines
Error, msg1

Warn, msg2

Error, msg1

Info, msg8

Warn, msg2

Info, msg8

Error, msg3

Info, msg5

Info, msg5

Error, msg4

Warn, msg9

Error, msg1

errors

errors = lines.filter(.startsWith(ERROR))

Error, msg1

Error, msg1

Error, msg3 Error, msg4

Error, msg1

messages

messages = errors.map .split(‘\t ’)(2)

msg1

msg1

msg3 msg4

msg1

T
h

es
e

ar
e

n
o

t
ye

t
g

en
er

at
ed

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 49 / 59

RDD and Processing

lines
errors

messages
msg1

msg1

msg3 msg4

msg1

lines

messages.filter(.contains(foo)).count

errors

messages
msg1

msg1

msg3 msg4

msg1

N
ow

th
e

R
D

D
s

ar
e

m
at

er
ia

liz
ed

;

C
o

m
m

an
d

n
o

t
ye

t
ex

ec
u

te
d

Driver

messages.filter(.contains(foo)).count

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 49 / 59

GraphX [Gonzalez et al., 2014]

Built on top of Spark

Objective is to combine data analytics with graph processing

Unify computation on tables and graphs

Carefully convert graph to tabular representation

Native GraphX API or can accommodate vertex-centric computation

Native
Spark
Apps

Spark
SQL

Spark
Streaming

MLlib
(machine
learning)

GraphX
(graph

processing)

Apache Spark

Vertex-
centric API

AppApp

App App

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 50 / 59

GraphX: Representation of Graphs as Tables

A

B

C

D

E

F

G

H

I

J

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 51 / 59

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 51 / 59

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 51 / 59

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 51 / 59

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F
Joining vertices

and edges
Move vertices to edges

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 51 / 59

GraphX: Representation of Graphs as Tables

Partition 1

Partition 2

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table

(RDD)
v-prop:vertex prop.

Edge Table

(RDD)
e-prop:edge prop.

Routing
Table

(RDD)

A

B

C

D

E

F

G

H

I

J

Edge-disjoint
partitioning

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

A 1 2

B 1

...

I 1

F 1 2

D 2

E 2

J 2

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 51 / 59

GraphX: Computation Model

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table Edge Table

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 52 / 59

GraphX: Computation Model

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table Edge Table

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F

First Phase: Join
Vertex table on Edge table

Triples View

A v-prop e-prop B v-prop

A v-prop e-prop C v-prop

C v-prop e-prop G v-prop

...

E v-prop e-prop G v-prop

J v-prop e-prop G v-prop

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 52 / 59

GraphX: Computation Model

M
ac

h
in

e
1

M
ac

h
in

e
2

Vertex Table Edge Table

A v-prop

B v-prop

...

I v-prop

D v-prop

E v-prop

F v-prop

J v-prop

A e-prop B

A e-prop C

...

F e-prop G

A e-prop D

A e-prop E
...

E e-prop F
Triples View

A v-prop e-prop B v-prop

A v-prop e-prop C v-prop

C v-prop e-prop G v-prop

...

E v-prop e-prop G v-prop

J v-prop e-prop G v-prop

Second Phase: Compute neighbourhood
Group-by aggregate

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 52 / 59

GraphX: Operators

Table transform operators – inherited from Spark
map(func) Return a new RDD formed by passing each element

of the source through a function func

filter(func) Return a new RDD formed by selecting those
elements of the source on which func returns true

flatMap(func) Similar to map, but each input item can be mapped
to 0 or more output items

mapPartitions(func) Similar to map, but runs separately on each partition
(block) of the RDD, so func must be of type Iterator

sample(repl , fraction,
seed)

Sample a fraction fraction of the data, with or
without replacement (set repl accordingly), using a
given random number generator seed

union(otherDataset)
intersection()

Return a new RDD containing the union/intersection
of the elements in the source RDD and the argument

groupByKey() Operates on a RDD of (K, V) pairs, returns a RDD
of (K, Iterable<V>) pairs

reduceByKey(func, . . .) Operates on a RDD of (K, V) pairs, returns a RDD
of (K, V) pairs where the values for each key are
aggregated using the given reduce function func

Graph operators
Graph(vertex coll ,
edge coll)

Logically binds together a pair of vertex and edge
property collections into a property graph; verifies
that each vertex occurs only once and edges connect
existing vertices

triplets(vertex coll ,
vertex coll , edge coll)

Returns the triplets view of the graph

mrTriplets(map,reduce) MapReduce triplets - encodes the two-stage process
of join to create triplets and group by

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 53 / 59

GraphX: Operators

Table transform operators – inherited from Spark

Graph operators
Graph(vertex coll ,
edge coll)

Logically binds together a pair of vertex and edge
property collections into a property graph; verifies
that each vertex occurs only once and edges connect
existing vertices

triplets(vertex coll ,
vertex coll , edge coll)

Returns the triplets view of the graph

mrTriplets(map,reduce) MapReduce triplets - encodes the two-stage process
of join to create triplets and group by

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 53 / 59

Acknowledgements

This presentation draws upon collaborative research and discussions with
the following colleagues

Khaled Ammar, U. Waterloo Khuzaima Daudjee, U. Waterloo

Young Han, U. Waterloo

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 54 / 59

Thank you!

Research supported by

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 55 / 59

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 56 / 59

References I

Ammar, K. and Özsu, M. T. (2016). Approaches to graph processing – an overview. In
preparation.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2012). The HaLoop approach to
large-scale iterative data analysis. VLDB J., 21(2):169–190.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113.

Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., and Stoica, I.
(2014). GraphX: graph processing in a distributed dataflow framework. In Proc. 11th
USENIX Symp. on Operating System Design and Implementation, pages 599–613.

Han, M., Daudjee, K., Ammar, K., Özsu, M. T., Wang, X., and Jin, T. (2014). An
experimental comparison of Pregel-like graph processing systems. Proc. VLDB
Endowment, 7(12):1047–1058.

Li, F., Ooi, B. C., Özsu, M. T., and Wu, S. (2014). Distributed data management using
MapReduce. ACM Comput. Surv., 46(3):Article No. 31.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.
(2012). Distributed graphlab: A framework for machine learning in the cloud. Proc.
VLDB Endowment, 5(8):716–727.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 57 / 59

References II

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. (2010). Pregel: a system for large-scale graph processing. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 135–146.

Michiardi, P. (2015). Introduction to spark internals. Slideshare. Available from:
http://www.slideshare.net/michiard/introduction-to-spark-internals?

qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf1&b=&from_search=11 [Last
retrieved: 9 July 2015].

Tian, Y., Balmin, A., Corsten, S. A., Tatikonda, S., and McPherson, J. (2013). From
“think like a vertex” to “think like a graph”. Proc. VLDB Endowment, 7(3):193–204.

Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for
distributed computation on real-world graphs. Proc. VLDB Endowment,
7(14):1981–1992.

Zaharia, M. (2016). An Architecture for Fast and General Data Processing on Large
Clusters. ACM Books. Forthcoming.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,
Shenker, S., and Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proc. 9th USENIX Symp. on
Networked Systems Design & Implementation, pages 2–2.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 58 / 59

http://www.slideshare.net/michiard/introduction-to-spark-internals?qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf1&b=&from_search=11
http://www.slideshare.net/michiard/introduction-to-spark-internals?qid=511145e7-79d7-41d8-a133-9e705d4933c3&v=qf1&b=&from_search=11

References III

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:
Cluster computing with working sets. In Proc. 2nd USENIX Workshop on Hot Topics
in Cloud Computing, pages 10–10.

© M. Tamer Özsu Dagstuhl Spring School (2016/03/07–09) 59 / 59

	Introduction – Graph Types
	Property Graph Processing
	Classification
	Online querying
	Offline analytics

	Graph Analytics Computational Models
	Vertex-Centric
	Block-Centric
	MapReduce-Based
	Modified MapReduce

