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Seminar Program

Monday June 15, 2015

Opening

10.00–10.30 Opening

10.30–11.00 Exponential analysis, Sparse interpolation and Padé approxima-
tion
Annie Cuyt, Wen-shin Lee

11.00–12.00 Discussion

12.15–13.45 Lunch

Application Section

14.30–15.00 Mobile Sampling
Karlheinz Gröchenig

15.00–15.30 Order parameter for images of structured arrays
Adhemar Bultheel, Forrest Kaatz

15.30–16.00 Sub-Nyquist spectral analysis
Matteo Briani, Annie Cuyt, Wen-shin Lee

16.00–16.30 Coffee break

16.30–17.00 High-speed fluorescence lifetime imaging (FLIM) instruments
David Li

17.00–17.30 Inverse Problems regularised by Sparsity
Pier Luigi Dragotti

17.30–18.00 Estimating Variable Star Periods from Unevenly Sampled Light
Curve Data
Daniel Lichtblau

18.00–19.30 Dinner
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Tuesday June 16, 2015

Exponential Analysis

08.45–09.45 Discussion

09.45–10.15 The generalized Prony method and its application I and II
Thomas Peter, Gerlind Plonka

10.15–10.45 The generalized Prony method and its application I and II
Thomas Peter, Gerlind Plonka

10.45–11.15 Coffee break

11.15–11.45 A multivariate generalization of Prony’s method
Stefan Kunis, Thomas Peter, Tim Römer, Ulrich von der Ohe

11.45–12.15 A multivariate generalization of Prony’s method
Stefan Kunis, Thomas Peter, Tim Römer, Ulrich von der Ohe

12.15–13.45 Lunch

Exponential Analysis

13.45–14.30 Discussion

14.30–15.00 Numerical stability of the parameter estimation problem in sparse
generalized exponential sums
Dmitry Batenkov

15.00–15.30 A deterministic sparse FFT algorithm for vectors with short sup-
port
Katrin Wannenwetsch

15.30–16.00 Reconstruction of Structured Functions from Sparse Fourier Data
Marius Wischerhoff

16.00–16.30 Coffee break

16.30–17.00 Accuracy of Spike-Train Fourier Reconstruction for Near-Colliding
Nodes
Andrey Akinshin, Yosef Yomdin, Dmitry Batenkov

17.00–17.30 High dimensional approximation with trigonometric polynomials
Lutz Kämmerer, Daniel Potts, Toni Volkmer

17.30–18.00 Efficient spectral estimations by MUSIC and related algorithms
Daniel Potts, Toni Volkmer, Manfred Tasche

18.00–19.30 Dinner
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Wednesday June 17, 2015

Approximation Theory

09.00–09.30 New approaches to Vector-Valued Rational Interpolation
Avram Sidi

09.30–10.00 Using noise to detect faint signals: tricks with Padé approximants
to Z-transforms
Luca Perotti, Daniel Bessis, Daniel Vrinceanu, Tania Regimbau

10.00–10.30 Trivariate polynomial approximation on Lissajous curves
Stefano De Marchi

10.30–11.00 Coffee break

11.00–11.30 Behavior preserving extension of univariate and bivariate func-
tions
David Levin

11.30–12.00 On the conditioning of the Padé map and related questions
Bernhard Beckermann

12.00–12.30 Well conditioned rational functions approximants versus numeri-
cally co-prime polynomials
Ana C. Matos

12.30–13.45 Lunch

Excursion

18.00–19.30 Dinner
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Thursday June 18, 2015

Sparse Interpolation

08.45–09.45 Discussion

09.45–10.15 Error-Correcting Sparse Interpolation in Chebyshev Basis
Andrew Arnold, Erich L. Kaltofen

10.15–10.45 Multidimensional approximation of functions sampled at unequally
spaced points by sums of exponentials
Fredrik Andersson, Marcus Carlssoni, Herwig Wendt

10.45–11.15 Coffee break

11.15–11.45 Using univariate algorithms to solve multivariate problems
Daniel S. Roche

11.45–12.15 A Sparse Sampling Method to Estimate Parameters in Multivari-
ate Exponential Sums
Annie Cuyt, Wen-shin Lee

12.15–13.45 Lunch

Sparse Interpolation

13.45–14.30 Discussion

14.30–15.00 Sparsity with Symbolic Polynomials
Stephen M. Watt

15.00–15.30 Fourier-Sparsity Testing of Boolean Functions
Andrew Arnold, Eric Blais

15.30–16.00 Towards simplified construction of subresultant matrix of multi-
ple univariate polynomials
Akira Terui

16.00–16.30 Coffee break

16.30–18.00 Discussion

18.00–19.30 Dinner
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Friday June 19, 2015

Related Topics

08.45–09.45 Discussion

09.45–10.15 Structured low-rank approximation: Theory, algorithms, and ap-
plications
Ivan Markovsky

10.15–10.45 Hankel and Quasi-Hankel low-rank matrix completion: a convex
relaxation
Konstantin Usevich, Pierre Comon

10.45–11.15 Coffee break

11.15–11.45 Semidefinite Representations of Noncompact Convex Sets
Lihong Zhi

11.45–12.15 A moment matrix approach to symmetric cubatures
Mathieu Collowald, Evelyne Hubert

12.15–13.45 Lunch

Departure
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Accuracy of Spike-Train Fourier
Reconstruction for Near-Colliding Nodes

Andrey Akinshin Yosef Yomdin
The Weizmann Institute of Science

Rehovot
Israel

andrey.akinshin@gmail.com, yosef.yomdin@weizmann.ac.il

Dmitry Batenkov
Technion - Israel Institute of Technology

Haifa 32000
Israel

batenkov@cs.technion.ac.il

Abstract

We study reconstruction of “spike-train” signals F of the form
F (x) =

∑d
j=1 ajδ(x−xj), from their Fourier transform F̂ (s), known for s ∈ [−N,N ],

with an absolute error not exceeding ε > 0. We concentrate on “near-collision”
situations where the nodes xj are known to form an l elements cluster of a size
h� 1.

We show that in such situations the geometry of error amplification in the re-
construction is governed by the “Prony foliations” Sq whose leaves are defined by
the Prony equations

∑d
j=1 ajx

k
j = γk, with k = 0, . . . , q ≤ l, and with the arbitrary

right-hand sides γk. On this base we give an “absolute” (i.e. valid with any recon-
struction method) lower bound for the “worst case” reconstruction error of F from
F̂ . We show that for the measurement error ε > C1(hN)2l−1, the inside configu-
ration of the cluster nodes (in the worst case scenario) cannot be reconstructed at
all.

Combining a proper rescaling with the “Decimation method” we show that for
ε < C2(hN)2l−1, C2 � C1, an accurate (up to an error αh, α� 1) reconstruction
of the cluster nodes is possible. The same algorithm reconstructs the non-cluster
nodes and amplitudes with the full accuracy (of order ε

N ).
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Multidimensional approximation of functions
sampled at unequally spaced points by sums of

exponentials

Fredrik Andersson Marcus Carlsson
Centre for Mathematical Sciences

Lund University
Sweden

{fa,mc}@maths.lth.se

Herwig Wendt
IRIT-ENSEEITH

University of Toulouse
France

herwig.wendt@irit.fr

Abstract

Let f be sampled at unequally spaced points xm ∈ Rd. We consider the problem
of finding

g(x) =

K∑
k=1

cke
2πix·ξk , (1)

so that f(xm) ≈ g(xm).
Let Ξ and Υ be subsets of equally spaced grids in Rd and let Ω = Ξ+Υ = {x+y :

x ∈ Ξ, y ∈ Υ}. Given a function g on Ω, consider the generalized multidimensional
Hankel operator

Γgh(x) =
∑
y∈Υ

g(x+ y)h(y), x ∈ Ξ (2)

By Kronecker;s theorem Γg has rank K if g is of the form (1). It also turns out
that range of Γg is the space of all linear combinations of the functions e2πix·ξk on
Ξ (See Lemma 4.2 of [1]). Let us represent the operator with the matrix Γg.

Let J be an interpolation matrix that interpolates the values at the equally
spaced point in Ω to unequally spaced points Ψ = {xm}Mm=1 in Rd. In order to
approximate the function f sampled at Ψ using K exponentials, we consider the
optimization problem

minimize
g

M∑
m=1

|(Jg)m − f(xm)|2

subject to rank Γg = K

(3)

where (Jg)m is the interpolated value of g at xm.
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We follow the setup in [4], and formulate (3) using the alternating direction
method of multipliers [5]. The problem formulations is not convex, and there is
hence no guarantee that the procedure will converge. However, it will typically give
a matrix values of g such that the singular values σk of Γg are small if k > K.
To estimate the (multidimensional) frequencies ξk associated with g we can then
follow the approach gives in [2, 3] by solving systems of polynomial equations with
coefficients taken from the singular vectors of Γg for k > K.

References
[1] Fredrik Andersson and Marcus Carlsson. On general domain truncated correla-

tion and convolution operators with finite rank. Integral Equations and Operator
Theory, pages 1-32, 2015.

[2] Fredrik Andersson, Marcus Carlsson, and V Maarten. Nonlinear approximation
of functions in two dimensions by sums of exponential functions. Applied and
Computational Harmonic Analysis, 29(2):156-181, 2010.

[3] Fredrik Andersson, Marcus Carlsson, and V Maarten. Nonlinear approximation
of functions in two dimensions by sums of wave packets. Applied and Computa-
tional Harmonic Analysis, 29(2):198-213, 2010.

[4] Fredrik Andersson, Marcus Carlsson, Jean-Yves Tourneret, and Herwig Wendt.
A new frequency estimation method for equally and unequally spaced data.
Signal Processing, IEEE Transactions on, 62(21):5761-5774, 2014.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundation and Trends in Machine Learning, 3(1):1-122,
2011.
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Fourier-Sparsity Testing of Boolean Functions
Andrew Arnold Eric Blais

University of Waterloo
Waterloo, Ontario

Canada
{a4arnold,eblais}@uwaterloo.ca

Abstract

We consider the problem of testing whether a function f has at most s nonzero
Fourier coefficients, in which case we say f is s-sparse, given black-box access to
f . We restrict our attention to perhaps the simplest case when f is a Boolean
function acting on n bits. The analogous problem of learning the Fourier transform
of an s-sparse Boolean function f was studied in previous work by Kushilevitz and
Mansour [SIAM J. Computing, vol 22. (1992)], and Levin [J. Symb. Logic, vol
58. (1993)], the latter resulting in an O(ns) Monte Carlo Sparse Fourier Transform
(SFT) algorithm. Their work was the foundation for subsequent Sparse Fourier
Transform algorithms in more general settings.

We say an algorithm is an ε-tester for sparse Boolean functions if it accepts if
f is s-sparse and rejects if f is ε-far from s-sparse in terms of `2 norm, each with
probability at least 2/3. Gopolan et al. [SIAM J. Computing, vol 40. (2011)], gave
the first such tester with query-complexity polynomial in s and ε−1.

We improve upon this result, present a sparsity tester with query-complexity
O(s log sε−2 + ε−4). Our tester relies on dimensionality-reduction techniques de-
veloped in the aforementioned previous work. Using these techniques, we reduce
sparsity testing to the problem of homomorphism testing, which in turn may be
solved via the Blum-Luby-Rubinfeld (BLR) linearity test [J. Comput. Syst. Sci.
Int., vol 47. (1993)].
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Error-Correcting Sparse Interpolation in
Chebyshev Basis

Andrew Arnold∗

University of Waterloo
Waterloo, Ontario

Canada
a4arnold@uwaterloo.ca

Erich L. Kaltofen†

North Carolina State University
Raleigh, North Carolina

USA
kaltofen@ncsu.edu

Abstract

We present an error-correcting interpolation algorithm for a univariate black-
box polynomial that has a sparse representation using Chebyshev polynomials as
a term basis. Our algorithm assumes that an upper bound on the number of er-
roneous evaluations is given as input, and is a generalization of the algorithm by
Lakshman and Saunders [SIAM J. Comput., vol. 24 (1995)] for interpolating sparse
Chebyshev polynomials and the techniques in error-correcting sparse interpolation
in the usual basis of consecutive powers of the variable due to Comer, Kaltofen, and
Pernet [Proc. ISSAC 2012 and 2014]. We prove the correctness of our list-decoder-
based algorithm with a Descartes-rule-of-signs-like property for sparse polynomials
in Chebyshev basis. We also give a new algorithm that reduces the sparse interpo-
lation in Chebyshev basis to that in power basis, thus making the many techniques
for the sparse interpolation in power basis, for instance, supersparse (lacunary) in-
terpolation over large finite fields, available to interpolation in Chebyshev basis.
Furthermore, we can customize the randomized early termination algorithms from
Kaltofen and Lee [J. Symb. Comput., vol. 36 (2003)] to our new approach.

∗This research was supported in part by NSERC.
†This research was supported in part by the National Science Foundation under Grants CCF-1115772

and CCF-1421128
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Numerical stability of the parameter
estimation problem in sparse generalized

exponential sums
Dmitry Batenkov∗

Technion – Israel Institute of Technology
Haifa 32000

Israel
batenkov@cs.technion.ac.il

Abstract

We consider the parameter estimation problem in sparse generalized exponen-
tial sums of the form m(k) =

∑s
j=1 e

ıxjk
∑dj−1

`=0 a`,jk
`, when m(k) are known only

approximately.
We provide estimates on the component-wise condition numbers of the parame-

ters xj and a`,j above, and show that they can be accurately recovered by sampling
at arithmetic progressions and polynomial homotopy methods.

We also discuss the application of these ideas to the problem of recovering a
piecewise-smooth function (including the positions of the discontinuities) from its
Fourier coefficients.

References
[1] D. Batenkov. Complete Algebraic Reconstruction of Piecewise-Smooth Func-

tions from Fourier Data. Mathematics of Computation, 2015.

[2] Dmitry Batenkov. Accurate solution of near-colliding Prony systems via dec-
imation and homotopy continuation. arXiv:1501.00160 [cs, math], December
2014. arXiv: 1501.00160.

∗The research leading to these results has received funding from the European Research Council under
European Union’s Seventh Framework Program, ERC Grant agreement no. 320649
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On the conditioning of the Padé map and
related questions

Bernhard Beckermann∗

Laboratoire Painlevé UMR 8524, UFR Mathématiques
Université de Lille, France

{bbecker,matos}@math.univ-lille1.fr

Abstract

Padé approximants play an important role in signal processing, sparse interpo-
lation and exponential analysis. In this talk we will report about recent results
from [1] concerning the forward and backward conditioning of the (real) Padé map,
which sends a vector of Taylor coefficients onto the normalized vector of coefficients
of the Padé numerator and denominator. In particular, we show that this map is not
necessarily well conditioned for robust Padé approximants in the sense of Trefethen
et al [2].

We will also discuss the condition number of related non-linear maps.
This is a joint work with Ana C. Matos.

References
[1] B. Beckermann, A. Matos, Algebraic properties of robust Padé approximants

Journal of Approx. Theory 190, 91-115 (2015)

[2] P. Gonnet, S. Güttel and L.N. Trefethen, Robust Padé approximation via SVD,
SIAM Review, 55 (2013), 101-117.

∗Supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).
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Sub-Nyquist spectral analysis
Matteo Briani Annie Cuyt Wen-shin Lee
Dept. Mathematics and Computer Science

University of Antwerp
Belgium

{matteo.briani, annie.cuyt, wen-shin.lee}@uantwerpen.be

Abstract

In the field of sparse interpolation, parametric methods aim to retrieve the val-
ues of parameters of a linear combination of exponential functions from samples in
a uniform time grid. These samples are collected following the Shannon-Nyquist
theorem that dictates the minimum sampling rate that prevents the aliasing effect.
In this paper we explain how it is possible, by means of undersampling, to use a
coarser time grid and still be able to solve the aliasing effect. This reflects into a
better conditioning of the problem and this behavior is explained by means of the ill-
disposedness and a link to Padé approximation theory. Avoiding the aliasing effect,
and using a coarser time grid, it is possible to perform several smaller independent
analysis from the original set of samples. Joining these analysis together we obtain
a method that brings higher accuracy to the existing parametric methods and in-
troduces an extra parameter that can be use as validator. This is especially useful
when the parametric method has to deal with signals consisting of close frequencies
in a broad spectrum.
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Order parameter for images of structured
arrays

Adhemar Bultheel
Dept. Computer Science, KU Leuven

Heverlee
Belgium

adhemar.bultheel@kuleuven.be

Forrest Kaatz
Mesalands Community College

Tucumcari
NM, USA

fhkaatz@gmail.com

Abstract

In nature (e.g. a bee honeycomb, muscle structure, crystals) or in engineering
(e.g. micro lens arrays, nano pore/pillar arrays, solar cells) two-dimensional highly
regular arrays are produced. Hexagonal, square or triangular grids are most com-
mon. Perfect symmetry of the grids does not exist in practical situations. Given the
image of some array, one may analyse the properties of each of the individual nodes
of the grid and compute parameters like their size, the location of their centers,
perhaps their orientation, etc. These parameters could be combined to define some
number indicating the deviation from the ideal grid.

We have tried to compute some order parameter from the Fourier transform
of the image. For example a perfect hexagonal array has a Fourier spectrum that
consists of a central peak, surrounded by six smaller peaks and their harmonics.
This is a sparse exponential representation. The more the nodes in the image are
dislocated from the perfect grid, the more noise will show up in the spectrum. Thus
the amount of noise in the Fourier domain can be used as a measure for the disorder
of the original grid.

Unfortunately, images may depend on many parameters (number of nodes, size
of the nodes, shape of the nodes, orientation of the image,. . . ) so that the Fourier
technique only works in a rather restrictive number of situations and it is probably
not useful in practical situations.
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A moment matrix approach to symmetric
cubatures

Mathieu Collowald Evelyne Hubert
Inria Méditerrannée

Sophia Antipolis, France
{mathieu.collowald, evelyne.hubert}@inria.fr

Abstract

Quadrature and sparse interpolation are closely linked. The common key issue
is the construction of a linear form

Λ : R[x]→ R, p 7→
r∑
j=1

ajp(ξj)

from the knowledge of its restriction to R[x]≤d. The unknowns are the weights aj
and the nodes ξj .

Cubature is a generalization of quadrature in higher dimension. An approach
based on moment matrices was proposed in [2, 4]. We give a basis-free version in
terms of the Hankel operator H associated to Λ. The existence of a cubature of
degree d with r nodes boils down to conditions of ranks and positive semidefiniteness
on H. The nodes are then the solutions of a generalized eigenvalue problem.

Standard domains of integration are symmetric under the action of a finite group.
It is natural to look for cubatures that respect this symmetry [1, 3]. Introducing
adapted bases obtained from representation theory, the symmetry constraint allows
to block diagonalize the Hankel operator H. The size of the blocks is explicitly
related to the orbit types of the nodes. From the computational point of view, we
then deal with smaller-sized matrices both for securing the existence of the cubature
and computing the nodes.

References
[1] R. Cools. Constructing cubature formulae: the science behind the art. Acta

numerica, 6:1–54, 1997.

[2] L. Fialkow and S. Petrovic. A moment matrix approach to multivariable cuba-
ture. Integral Equations Operator Theory, 52(1):85–124, 2005.

[3] K. Gatermann. The construction of symmetric cubature formulas for the square
and the triangle. Computing, 40(3):229–240, 1988.

[4] J. B. Lasserre. The existence of Gaussian cubature formulas. J. Approx. Theory,
164(5):572–585, 2012.
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A Sparse Sampling Method to Estimate
Parameters in Multivariate Exponential Sums

Annie Cuyt Wen-shin Lee
Dept. Mathematics and Computer Science

University of Antwerp
Belgium

{annie.cuyt, wen-shin.lee}@uantwerpen.be

Abstract

We consider the interpolation of an n-variate exponential sum

F (x1, . . . , xn) =

t∑
j=1

cje
fj,1x1+fj,2x2+···+fj,nxn .

That is, to recover parameters cj , fj,k from the evaluations of F (x1, . . . , xn).
We present a parametric method that can interpolate F (x1, . . . , xn) from (n+1)·t

evaluations. In order to solve for the multivariate parameters, the target function
F (x1, . . . , xn) is evaluated at the additional points defined by the identification
shifts. Since the total number of parameters cj and fj,k is exactly (n + 1) · t,
our method can interpolate F (x1, . . . , xn) from the minimum possible number of
evaluations.

In general, our method can be used in exponential analysis problems where ad-
ditional evaluations of the same exponentials are required. One of such applications
is to recover the correct frequencies from the aliased results caused by different
subsamplings.

In computer algebra, our idea can be applied to interpolate a blackbox polyno-
mial evaluated at small finite fields.

Our method can be embedded in any Prony-like algorithm, such as the least
square Prony, ESPRIT, matrix pencil, etc., thus can be viewed as a new class of
tools exposing an additional range of possibilities in exponential analysis.
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Exponential analysis, Sparse interpolation and
Padé approximation
Annie Cuyt Wen-shin Lee

Dept. Mathematics and Computer Science
University of Antwerp

Belgium
{annie.cuyt, wen-shin.lee}@uantwerpen.be

Abstract

A common underlying problem statement in many applications is that of de-
termining the number of components, and for each component the value of the
frequency, damping factor, amplitude and phase in a multi-exponential model. It
occurs, for instance, in magnetic resonance and infrared spectroscopy, vibration
analysis, seismic data analysis, electronic odour recognition, keystroke recognition,
nuclear science, music signal processing, transient detection, motor fault diagnosis,
electrophysiology, drug clearance monitoring and glucose tolerance testing, to name
just a few.

The general technique of multi-exponential modeling is closely related to what
is commonly known as the Padé-Laplace method in approximation theory, and the
technique of sparse interpolation in the field of computer algebra. The problem
of multi-exponential modeling is an inverse problem and therefore may be severely
ill-posed, depending on the relative location of the frequencies and phases. Besides
the reliability of the estimated parameters, the sparsity of the multi-exponential
representation has become important. A representation is called sparse if it is a
combination of only a few elements instead of all available generating elements.

Despite the close connections between these fields, there is a clear lack of commu-
nication in the scientific literature. The aim of this seminar is to bring researchers
together from the three mentioned fields, with scientists from the varied application
domains.
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Trivariate polynomial approximation on
Lissajous curves

Stefano De Marchi
Department of Mathematics, University of Padova

Italy
demarchi@math.unipd.it

Abstract

We study Lissajous curves in the 3-cube, that generate algebraic cubature for-
mulas on a special family of rank-1 Chebyshev lattices. These formulas are used
to construct trivariate hyperinterpolation polynomials via a single 1-d Fast Cheby-
shev Transform (by the Chebfun package), and to compute discrete extremal sets
of Fekete and Leja type for trivariate polynomial interpolation. Applications could
arise in the framework of Lissajous sampling for MPI (Magnetic Particle Imaging).

Joint work with Len Bos (University of Verona) and Marco Vianallo (University
of Padova)
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Inverse Problems regularised by Sparsity
Pier Luigi Dragotti∗

Imperial College London
London

United Kingdom
p.dragotti@imperial.ac.uk

Abstract

Modelling signals as sparse in a proper domain has proved useful in many sig-
nal processing tasks and, here, we show how sparsity can be used to solve inverse
problems. We first recall that many inverse problems involve the reconstruction of
continuous-time or continuous-space signals from discrete measurements and show
how to relate the discrete measurements to some properties of the original signal
(e.g., its Fourier transform at specific frequencies). Given this partial knowledge of
the original signal, we then solve the inverse problem using sparsity. We focus on two
specific problems which have important practical implications: localisation of diffu-
sion sources from sensor measurements and reconstruction of planar domains from
samples. First, we show how to reconstruct specific planar domains whose contours
are determined using implicit functions, then we localise diffusion sources using a
variation of the ‘reciprocity gap’ method which involves analytic test functions.

In both cases, the problem is solved by building a Prony’s type system and by
building structured matrices which, in the ideal settings, are simultaneously Toeplitz
and rank deficient.

∗Sponsored by European Research Council ERC, project 277800 (RecoSamp). Joint work with: T.
Blu (CUHK), M. Vetterli (EPFL), John Murray-Bruce (ICL) and Jon Onativia (ICL)
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Mobile Sampling
Karlheinz Gröchenig

Faculty of Mathematics
University of Vienna
Nordbergstrasse 15

A-1090 Vienna, Austria
karlheinz.groechenig@univie.ac.at

Abstract

We study the design of sampling trajectories for stable sampling and the re-
construction of bandlimited spatial fields using mobile sensors. The spectrum is
assumed to be a symmetric convex set. As a performance metric we use the path
density of the set of sampling trajectories that is defined as the total distance trav-
eled by the moving sensors per unit spatial volume of the spatial region being
monitored. Focussing first on parallel lines, we identify the set of parallel lines with
minimal path density that contains a set of stable sampling for fields bandlimited
to a known set. We then show that the problem becomes ill-posed when the op-
timization is performed over all trajectories by demonstrating a feasible trajectory
set with arbitrarily low path density. However, the problem becomes well-posed
if we explicitly specify the stability margins. We demonstrate this by obtaining a
non-trivial lower bound on the path density of an arbitrary set of trajectories that
contain a sampling set with explicitly specified stability bounds.

This is joint work with Jose Luis Romero, Univ. of Vienna, Jayakrishnan Un-
nikrishnan and Martin Vetterli from Ecole Polytechnique Fédérale de Lausanne
(EPFL), Switzerland.
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Abstract

In this talk, we present algorithms for the approximation of multivariate func-
tions by trigonometric polynomials. The approximation is based on sampling of
multivariate functions on rank-1 lattices. To this end, we study the approximation
of functions in periodic Sobolev spaces of dominating mixed smoothness. The pro-
posed algorithm based mainly on a one-dimensional fast Fourier transform, and the
arithmetic complexity of the algorithm depends only on the cardinality of the sup-
port of the trigonometric polynomial in the frequency domain. Therefore, we inves-
tigate trigonometric polynomials with frequencies supported on hyperbolic crosses
and energy based hyperbolic crosses in more detail. Furthermore, we present algo-
rithms where the support of the trigonometric polynomial is unknown.

References
[1] D. Potts, and T. Volkmer. Sparse high-dimensional FFT based on rank-1 lattice

sampling. Preprint 2015.

[2] L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate func-
tions by trigonometric polynomials based on rank-1 lattice sampling. J. Com-
plexity 31, 543-576, 2015.

∗Sponsored by German Research Foundation within the project PO 711/10-2.
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Abstract

A classical solution to the problem of parameter reconstruction for an expo-
nential sum from a finite number of samples is given by Prony’s method and the
parameters are recovered as roots of a single univariate polynomial. We present a
generalization of this method for exponential sums in an arbitrary finite number of
variables and realize the parameters as common roots of several multivariate poly-
nomials. Finally, the coefficients of the exponential sum arise as solutions to a linear
system of equations.

In the first part of the talk we explain this approach and its algebraic properties.
Provided we sample the exponential sum on an equidistant grid with a number
of grid points in each coordinate direction bounded from below by the number
parameters, unique reconstruction is guaranteed and this bound is shown to be
sharp. In its simplest form, the reconstruction method consists of setting up a
certain multilevel Toeplitz matrix of the samples, compute a basis of its kernel, and
compute by some method of choice the set of common roots of the multivariate
polynomials whose coefficients are given in the second step.

The second part of the talk is dedicated to numerical properties of our approach.
Provided the number of grid points in each coordinate direction is bounded from
below by some small constant divided by the separation distance of the parameters,
the kernel of the above Toeplitz matrix can be stably computed. Moreover, we
relate our approach to a recent semidefinite optimization formulation and show a
couple of numerical experiments.

∗Support by DFG-GRK1916 is gratefully acknowledged.
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Abstract

Given function values on a domain D0, possibly with noise, we examine the
possibility of extending the function to a larger domain D, D0 ⊂ D. In addition
to smoothness at the boundary of D0, the extension on D \D0 should also inherit
behavioral trends of the function on D0, such as growth and decay or even oscil-
lations. The approach chosen here is based upon the framework of linear models,
univariate or bivariate, with constant or varying coefficients.
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Abstract

Fast fluorescence lifetime imaging (FLIM) techniques are powerful tools for vi-
sualising protein interaction networks in living cells. FLIM has been used for cancer
diagnosis, assessing drug efficacy in cancer therapy, understanding brain functions,
etc. It can also sense physiological parameters such as Ca2+, pH, O2, temperature,
viscosity, etc. For real-time applications, such as visualising neuronal activities or
fast biophysical phenomena, it is desirable to apply innovative solid-state single-
photon sensors and fast hardware embedded exponential analysis processors that
can boost FLIM imaging. But is it easy to have a hardware-friendly and high-
efficient exponential analysis method for such applications?
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Abstract

A problem of interest in astronomy is determining the period of variable stars.
Data collection is of necessity irregular (can only sample on clear nights) and noisy
(from light pollution, atnospheric differences, etc.) We describe several ways in
which period estimation can be performed on such data. Some are by now classical
(from 60’s-80’s). One newer method will use Diophantine approximation.

∗Jeffrey Bryant
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Abstract

Mathematical engineering continuously addresses new applications and solves
new problems. The expansion of existing methods and applications makes it diffi-
cult to maintain a common theoretical framework. This talk shows the potential of
the structured low-rank approximation setting to unify problems of data modeling
from diverse application areas. An example treated in more details in the presen-
tation is identification of a linear time-invariant system from observed trajectories
of the system. We present an optimization method based on the variable projec-
tion principle. The method can deal with data with exact and missing (unknown)
values. Problems with exact and missing values occur in data driven simulation
and control—a new trend of model-free methods for system dynamical analysis and
control.

Reference: http://slra.github.io/
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Abstract

Rational functions like for instance Padé approximants play an important role
in signal processing, sparse interpolation and exponential analysis. However, for
a successful modeling with help of rational functions we want to make sure that
there is no "similar" rational function being degenerate, i.e., having strictly smaller
degree of both degrees of numerator and denominator. In particular, we prefer
having rational functions without Froissart doublets (i.e., roots close to a pole), and
without spurious poles (i.e., simple poles having small residuals).

In a recent paper [1] we showed that, provided that the Sylvester matrix built
with the coefficients of the numerator and denominator is well-conditioned, the
corresponding rational function has neither Froissart doublets nor spurious poles,
and this is also true to sufficiently "close" rational functions. Here closeness is
measured with two different metrics, in terms of the chordal distance of the values
on the unit disk, or in terms of the distance of normalized coefficient vectors. The
paper [1] also contained a comparision of these two metrics.

In [2] the authors introduced a measure for numerical coprimeness representing
the minimal distance in the coefficient vector metric to a couple of degenerate poly-
nomials (with a joint root allowing for canceling the fraction). They also showed
that if the underlying Sylvester matrix is well-conditioned then a couple of polyno-
mials is numerically coprime, the reciprocal being wrong.

The aim of this talk is to provide precise inequalities implying that also the
larger class of rational functions with numerator and denominator being numerically
coprime do not have neither Froissart doublets nor spurious poles.

This is a joint work with Bernd Beckermann and George Labahn.

References
[1] B. Beckermann, A. Matos, Algebraic properties of robust Padé approximants

Journal of Approx. Theory 190, 91-115 (2015)

[2] B. Beckermann, G. Labahn, When are two numerical polynomials relatively
prime? J. Symbolic Computations 26, 677-689 (1998).
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Abstract

Adding small amounts of noise is a recognized method to stabilize Padé ap-
proximants; due to the nonlinearity of the Padé approximant, larger amounts of
noise can be added to generate different time series and thus increase the statistics
when detection probabilities are low. Recently we proposed a new technique based
on the observation that the presence of even a weak signal significantly perturbs
the universal properties of noise poles and zeros of the Padé approximants to the
Z-transform of a data series. For data from two channels, combined in a single
complex sequence, the different behavior of poles corresponding to complex noise
and poles corresponding to coherent signal can also be used as a signature of the
presence of a signal in heavy noise.

∗Thanks to my co-workers
†Sponsored by NASA

35



The generalized Prony method and its
application I and II

Thomas Peter
Institute for Mathematics, University of Osnabrück, Germany

thomas.peter@uni-osnabrueck.de

Gerlind Plonka
Institute for Numerical and Applied Mathematics

University of Göttingen, Germany
plonka@math.uni-goettingen.de

Abstract

In this paper, we want to present a new very general approach for the recon-
struction of sparse expansions of eigenfunctions of suitable linear operators. This
approach provides us with a tool to unify all Prony-like methods on the one hand
and to essentially generalize the Prony approach on the other hand. Thus it will
establish a much broader field of applications of the method. In particular, we will
show that all well-known Prony-like reconstruction methods for exponentials and
polynomials known so far, can be seen as special cases of this approach. For exam-
ple, the new insight into Prony-like methods enables us to derive new reconstruc-
tion algorithms for orthogonal polynomial expansions including Jacobi, Laguerre,
and Hermite polynomials. The approach also applies to finite dimensional vector
spaces, and we derive a deterministic reconstruction method for M -sparse vectors
from only 2M measurements.

The talk will be split into two parts given by the two authors. In the first part
we concentrate on deriving the new general approach to apply Prony’s method
to sparse expansions of eigenfunctions of linear operators and present the close
connection to the well-known Prony-method.

The second part of the talk is especially dedicated to the advantages that the
new more general insights give us for applications, as e.g. the use of different linear
operators, the influence of the choice of functionals in case of noisy data and further
numerical issues.
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Abstract

In the spectral estimation, one has to determine all parameters of a univariate
resp. multivariate exponential sum h, if only finitely many (noisy) sampled data of
h are given. A frequently used method for spectral estimation is the known MU-
SIC algorithm. Another popular methods are ESPRIT and the approximate Prony
method (APM). We show that both MUSIC and APM are based on an orthogo-
nal projection onto a so-called noise space, whereas ESPRIT uses an orthogonal
projection onto the orthogonal complement of the noise space, the so-called signal
space. These orthogonal projections can be constructed by (partial) singular value
decomposition or QR decomposition of a rectangular Hankel matrix formed by the
given sampled data of h.

In this talk, we describe that MUSIC and the related algorithms can be efficiently
realized by sampling of h on special grids and using sparse fast Fourier transforms.
Numerical experiments illustrate the procedure.

∗Sponsored by German Research Foundation within the project PO 711/10-2.
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Abstract

A key feature of sparse interpolation algorithms is that their complexity should
scale nicely (often linearly) with the number of variables in the unknown function.
In fact, such algorithms can usually be decomposed into two parts: a “base case”
univariate interpolation algorithm, and a method to reduce a given multivariate
problem to one or more instances of a univariate one.

We will look at both historical and very recent approaches to the second part,
the multivariate-to-univariate reduction. As has been frequently observed, many
of these reductions are essentially orthogonal to the choice of underlying univariate
algorithm, allowing for a wide range of hybrid approaches — not all of which are
equally effective. We will examine the strengths and weaknesses of the various
variable reduction strategies, and aim to give some insights into how they may be
most effectively chosen and applied to new problems.
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Abstract

We discuss some recent vector-valued rational interpolation procedures for vector-
valued functions F (z), F : C→ CN . The interpolants produced by these procedures
are all of the simple form

Rp,k(z) =
Up,k(z)

Vp,k(z)
=

∑k
j=0 cj ψ1,j(z)Gj+1,p(z)∑k

j=0 cj ψ1,j(z)
.

Here

ψm,n(z) =

n∏
r=m

(z − ξr), n ≥ m ≥ 1; ψm,m−1(z) = 1, m ≥ 1,

and Gm,n(z) is the vector-valued polynomial of interpolation to F (z) at the points
ξi, m ≤ i ≤ n. The cj are scalars, and they are determined in different ways by
the different methods. As such, Rp,k(z) interpolates F (z) at ξi, 1 ≤ i ≤ p, in the
generalized Hermite sense.

We first discuss the algebraic properties of these interpolants, namely, their
uniqueness, symmetry, and reproducing properties. We next discuss their use in
approximating vector-valued meromorphic functions F (z) in the complex plane.

Next, choosing the interpolation points appropriately, for p→∞ and k fixed, we
derive de Montessus type convergence results for the interpolants and Koenig type
convergence results for their poles and residues, which show that these interpolants,
despite their simple appearance, are effective approximation tools. Especially inter-
esting Koenig type results are obtained when the residues of F (z) form a mutually
orthogonal set. (Note that, for any type of rational interpolation problem, whether
scalar or vector, the crucial test for deciding whether these are useful approximation
tools is the existence of de Montessus and Koenig type theories.)

Finally, we consider the fully confluent case in which all interpolation points ξi
coincide, and show the connection of the resulting interpolants with Krylov subspace
methods.
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Abstract

For three or more inputs of univariate polynomials with the real coefficients, we
discuss a new construction of subresultant-like matrix which enable us to estimate
the degree of the greatest common divisor (GCD) of the input polynomials from
its rank. Such matrix is used in approximate GCD algorithms using optimization
techniques with its degree is given in advance, especially for constructing constraints.
Therefore, in these algorithms, it is important to construct the matrix in a more
simplified form to make the overall algorithm more efficient. In this talk, for those
purposes, we discuss towards a proposal of a new simplified construction of the
matrix.
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Abstract

The completion of matrices with missing values under the rank constraint is a
non-convex optimization problem. A popular convex relaxation is based on min-
imization of the nuclear norm (sum of singular values) of the matrix. For this
relaxation, an important question is when the two optimization problems lead to
the same solution. This question was addressed in the literature mostly in the case
of random positions of missing elements and random known elements. In this con-
tribution, we analyze the case of structured matrices with fixed pattern of missing
values, in particular, the case of Hankel and quasi-Hankel matrix completion, which
appears as a subproblem in the computation of symmetric tensor canonical polyadic
decomposition. Similar matrix completion problems appear in other applications,
where a function can be approximated as a sum of complex exponentials (time
series analysis, medical imaging). We extend existing results on completion of rank-
one real Hankel matrices to completion of rank-r complex Hankel and quasi-Hankel
matrices.

∗This work is supported by ERC AdG-2013-320594 DECODA.
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Abstract

It is well known that usual FFT algorithms for the discrete Fourier transform of
a vector of length N require O(N logN) arithmetical operations. Within the last
years, there has been a great interest in sublinear time Fourier algorithms for sparse
vectors.

In this talk we consider the special case where a signal x ∈ CN is known to vanish
outside a support interval of length m < N . If the support length m of x or a good
bound of it is a-priori known we derive a sublinear algorithm to compute x from its
discrete Fourier transform x̂ ∈ CN . The proposed algorithm is deterministic and
numerically stable.

In case of exact Fourier measurements we require only O(m logm) arithmetical
operations. For noisy measurements, we propose a stable O(m logN) algorithm.

This is joint work with Gerlind Plonka.
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Abstract

We are interested in algorithms for “symbolic polynomials”, that is multivariate
polynomials generalized so the exponents are themeselves integer-valued multivari-
ate polynomials, for example xn2/2−nm/2 − ym. These objects may be used to
model parameterized families of Laurent polynomials, with integer evaluations of
the exponent variables giving specific Laurent polynomials. We have shown else-
where that when polynomials with coefficents in a particular ring form a unique
factorization domain, then so do the corresponding symbolic polynomials. We have
given algorithms to compute their GCDs and factorizations in this case. Some of
these algorithms rely on reduction to algorithms on sparse polynomials with many
more variables, as will be explored in this talk. We additionally describe some new
directions on Groebner bases for symbolic polynomials.
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Abstract

In several scientific areas, such as radio astronomy, computed tomography, and
magnetic resonance imaging, the reconstruction of structured functions from the
knowledge of samples of their Fourier transform is a common problem. For the
analysis of the examined object, it is important to reconstruct the underlying orig-
inal signal as exactly as possible. We aim to uniquely recover structured functions
from only a small number of Fourier samples. For this purpose, the Prony method,
which is a deterministic method for the recovery of sparse trigonometric functions,
is used as key instrument to derive algorithms for unique recovery by means of a
smallest possible set of Fourier data.

We will give an overview of reconstruction results for different function classes,
and we will consider two classes in detail.

First, we will examine linear combinations of N non-uniform shifts of a given bi-
variate function. Here, the unknown shift parameters and corresponding coefficients
in the linear combination are recovered from sparse Fourier data. Unique recovery
of the parameters is possible by using only 3N + 1 Fourier samples on three lines
through the origin. For this purpose, two predetermined lines are considered, while
the third sampling line is chosen dependently on the results obtained by employing
the samples from the first two lines. The presented approach can be generalized to
the case of d-variate functions with d > 2.

Secondly, we turn to the reconstruction of polygonal shapes in the real plane.
Here, a convex or non-convex polygonal domain D with N vertices is considered. It
is shown that the vertices and their order can be reconstructed by taking 3N samples
of the Fourier transform of the characteristic function of the polygonal domain D.
Again, two predetermined sampling lines and an appropriately chosen third line are
considered.
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Abstract

We consider the problem of the semidefinite representation of a class of non-
compact basic semialgebraic sets. We introduce the conditions of pointedness and
closedness at infinity of a semialgebraic set and show that under these conditions
our modified hierarchies of nested theta bodies and Lasserre’s relaxations converge
to the closure of the convex hull of S. Moreover, if the PP-BDR property is satisfied,
our theta body and Lasserre’s relaxation are exact when the order is large enough;
if the PP-BDR property does not hold, our hierarchies converge uniformly to the
closure of the convex hull of S restricted to every fixed ball centered at the origin. We
illustrate through a set of examples that the conditions of pointedness and closedness
are essential to ensure the convergence. Finally, we provide some strategies to deal
with cases where the conditions of pointedness and closedness are violated.

∗Thanks to my co-authors: Feng Guo and Chu Wang. Lihong Zhi is supported by NKBRPC
2011CB302400, the Chinese National Natural Science Foundation under grants 91118001.
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