
2011 Summer School on Program Synthesis
August 8-12, 2011

Schloss Dagstuhl, Germany

Topics
Controller and automata synthesis
Inductive synthesis and partial
program synthesis
Deductive synthesis
Hands-on exercises and contests

Organizers
Ras Bodik, UC Berkeley
Sumit Gulwani, Microsoft
Research
Viktor Kuncak, EPFL
Eran Yahav, Technion

How do I apply?
If you are a student or a postdoc and
want to attend this summer school, send
your application to
bodik@cs.berkeley.edu. Include your CV
a short essay of why you are interested in
the material. The deadline for
applications is June 30 but we will notify
you of acceptance a few days after your

Logistics
The summer school will accommodate
25 students. Students will share double
rooms. The cost of room and board will
be 225EUR for the 5-day school.

Students are expected to arrive on
Sunday, Aug 7, evening. The school will
end with lunch on Friday Aug 12.

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

1 von 10 16.08.11 15:52

application arrives.

This summer school is supported in part
by a travel grant from COST Action
IC0901: Rich-Model Toolkit - An
Infrastructure for Reliable Computer
Systems.

The official Dagstuhl web page for this
summer school.

Lectures (Schedule)

Program Synthesis is a Game

Barbara Jobstmann , Verimag, CNRS

Abstract and bio, slides.

Basics about games
Program synthesis and repair using games
Recent synthesis algorithms and quantitative synthesis

SAT and SMT for Synthesis

Vijay Ganesh, MIT

Abstract and bio. Slides for lecture 1 and lecture 2.

Standard-issue SAT solver
DPLL(T) and overview of SMT solvers and theories
Lazy/eager encodings for SMT theories

Functional Synthesis via Quantifier Elimination and Theorem Proving

Viktor Kuncak, EPFL

abstract and bio, slides for lecture 1 and lecture 2.

Synthesis of functional programs via quantifier elimination
Embedding synthesis language constructs into Scala
Interactive synthesis of code snippets via theorem proving

AutoBayes and synthesis by program derivation

Johann Schumann, SGT, Inc. NASA Ames

schema based algorithm synthesis
symbolic calculation and synthesis
the AutoBayes synthesis system

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

2 von 10 16.08.11 15:52

abstract and bio. Autobayes how-to and excercises.

Constraint-based synthesis with Sketch

Armando Solar-Lezama, MIT

abstract and bio, lecture 1, online demo, simplellr.sk.

Specifying candidate implementations with partial programs
Executable specifications and safety specifications
Synthesis with constraint solvers

Synthesis and Abstract Interpretation

Eran Yahav, Technion

abstract and bio, lecture 1, lecture 2.

Synthesis of synchronization in concurrent programs
Static analysis for concurrent programs
Abstraction refinement and synthesis

Miscellaneous

Ras Bodik, UC Berkeley

abstract and bio, school opening, lecture, closing brainstorming.

Learning-Based Synthesis with Version Space Algebra
Theorem-Prover-Based Synthesis, Rewrite-Based Synthesis
Interactive Synthesis

Abstracts

Program Synthesis is a Game

Automatically constructing a program from a specification can be seen as
a game between two players: (i) the environment and (ii) the program. The
environment chooses the input values on which the program is executed.
The program chooses how to use these values to produce output values
that are correct with respect to a given specification. The goal of the

Barbara Jobstmann is a CNRS researcher in
Verimag, an academic research laboratory
belonging to the National Center for Scientific
Research (CNRS) and the University of
Grenoble in France. She joint Verimag in
October 2009 after spending two years at the
Ecole Polytechnique Federale de Lausanne,
Switzerland. She received a Ph.D. degree in

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

3 von 10 16.08.11 15:52

program is to compute correct output values for all allowed input values.
So, no matter how the environment plays (i.e., which input values it
provides to the program), the results will always satisfy the given
specification.

The structure and the duration of the game depends on the given
specification and on the program we are aiming for. E.g., if we aim for a
sequential program that takes integer values as inputs and returns integer
values as outputs, then the synthesis has two steps. In Step 1, the
environment picks an input value, in Step 2, the program picks an output
value. However, in each step there are infinitely many options from which
the players can choose. Alternatively, we can ask to construct a reactive
program (e.g., a user interface or implementations of a communication
protocol). Such programs run forever and continuously react to their
environments, i.e., they regularly read new inputs values. A play in the
corresponding synthesis game has infinitely many steps in which the
environment and the program pick input and output values, respectively. A
usually assumption for games with infinite duration is that each player has
only a finite set of possible values to choose from. The branch of program
synthesis dealing with programs with finite memory but infinite durations
is called reactive program synthesis and is the focus of this lecture.

The lecture is split into three parts. The first part gives an introduction to
automata and automata-based game theory, the underlying techniques used
in reactive program synthesis. In this part, I will also introduce the logic
LTL (Linear-Time Temporal Logic), which provides a convenient way to
describe the desired behavior of a reactive program. The second part of the
lecture is devoted to classical program synthesis and repair techniques of
reactive programs with respect to a given LTL specification. The third part
of the lecture introduces recently developed and quite efficient synthesis
techniques as well as extensions to more non-standard techniques as
quantitative synthesis.

Computer Science from the University of
Technology in Graz, Austria in 2007.

Her research focuses on developing game theory techniques and applying
them to the problem of constructing correct and reliable computer
systems. In particular, she used games to automatically construct, correct,
and analyse computer systems and their specifications. Lately she is
working on combined qualitative and quantitative specifications to
construct systems that are correct and optimal.

She is co-chairing MEMOCODE 2011, the ACM/IEEE Ninth International
Conference on Formal Methods and Models for Codesign. She is leading
the Working Group 4 on high-level synthesis within the European research
network “Rich-Model Toolkit - An Infrastructure for Reliable Computer
Systems” (COST Action IC0901).

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

4 von 10 16.08.11 15:52

From SAT to SMT

In the last decade SAT/SMT solvers have seen an amazing improvement
in efficiency and expressive power. The result has essentially been a
dramatic rise in the use of SAT/SMT solvers in many areas of software
engineering research such formal methods, program analysis and testing.
It is safe to say that SAT/SMT solving is a disruptive technology.
Irrespective of one's strategic frame of thought in the context of software
reliability research, SAT/SMT solvers are an indispensable tactic.

In this series of talks, I will present the key technical ideas (developed by
many researchers including myself) behind the success of SAT/SMT
solvers, a description of some applications, some historical perspective,
and future directions.

Vijay Ganesh is a research scientist at MIT since
October 2007, and will soon join the IMDEA
Software Institute, Madrid, Spain as an assistant
professor. He completed his PhD in computer
science from Stanford University in September
2007.

His primary research interests are SAT/SMT
solvers, and their applications to software
reliability, computer security and biology. He
works on both the theory and practice of solvers.

He has designed and implemented several solvers, most notably, STP and
HAMPI. STP was one of the first solvers to enable an exciting new testing
technique called systematic dynamic testing (or concolic testing). STP has
been used in more than 100 research projects relating to software
reliability and computer security. More recently he designed another
solver, HAMPI, aimed at solving string constraints generated by the
analysis of PHP, JavaScript and Perl programs. His paper on HAMPI won
the ACM Distinguished Paper Award in 2009. STP was the winner of the
SMTCOMP competition for bit-vector solvers in 2006 and 2010.

Functional Synthesis via Quantifier Elimination and
Theorem Proving

To integrate synthesis into programming languages, software synthesis
algorithms should ideally behave in a predictable way: they should
succeed for a well-defined class of specifications. Moreover, software
synthesis algorithms should support unbounded data types of
programming languages, including numbers and data structures. I describe
how to systematically generalize decision procedures into synthesis
procedures, and use them to compile implicitly specified computations

Prof. Viktor Kuncak received a Ph.D. degree from
MIT in 2007 working with Martin C. Rinard in
CSAIL. In his dissertation he developed techniques
for automated reasoning about data structures in
imperative programs and formed the foundation of
the Jahob verification system, which he designed
and to a large extent implemented. Thomas Wies
has made profound contributions to this system
with his work on symbolic shape analysis and the
Bohne tool. His PhD work also included several

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

5 von 10 16.08.11 15:52

embedded inside functional and imperative programs. Synthesis
procedures are predictable because they are guaranteed to find code that
satisfies the specification whenever such code exists. To illustrate our
method, I derive synthesis procedures by extending quantifier elimination
algorithms for integer arithmetic and set data structures. I then show that
an implementation of such synthesis procedures can extend a compiler to
support implicit value definitions and advanced pattern matching.

decidability and undecidability results for constraints arising from
program analysis. He has a M.Sc. degree also from MIT, and a B.Sc.
degree in Computer Science from the University of Novi Sad.

Schema-based program Synthesis and the AutoBayes system

This lecture will combine theoretical background of schema based
program synthesis with the hands-on study of a powerful, open-source
program synthesis system (AutoBayes).

Schema-based program synthesis is a popular approach toward program
synthesis. The lecture will provide an introduction into this topic and
discuss how this technology can be used to generate customized
algorithms.

The synthesis of advanced numerical algorithms requires the availability
of a powerful symbolic (algebra) system. Its task is to symbolically solve
equations, simplify expressions, or to symbolically calculate derivatives
(among others) such that the synthesized algorithms become as efficient as
possible. We will discuss the use and importance of the symbolic system
for synthesis.

Any synthesis system is a large and complex piece of code. In this lecture,
we will study Autobayes in detail. AutoBayes has been developed at
NASA Ames and has been made open source. It takes a compact statistical
specification and generates a customized data analysis algorithm (in
C/C++) from it. AutoBayes is written in SWI Prolog and many concepts
from rewriting, logic, functional, and symbolic programming. We will

Dr. habil. Johann Schumann is Chief Scientist
for Computational Sciences with SGT, Inc. and
working at the Robust Software Engineering
Group at the NASA Ames Research Center. He is
engaged in research on software health
management, verification and validation of
advanced air traffic control algorithms and IVHM
systems, and the generation of reliable code for
data analysis and state estimation. Dr.
Schumann's general research interests focus on

the application of formal and statistical methods to improve design and
reliability of advanced safety- and security-critical software. Dr.
Schumann is author of a book on theorem proving in software engineering
(Springer) and has published more than 90 articles on automated
deduction and its applications, automatic program generation, V&V of
safety-critical systems, and neural network oriented topics.

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

6 von 10 16.08.11 15:52

discuss the system architecture, the schema libary and the extensive
support infra-structure.

Practical hands-on experiments and exercises will enable the student to get
insight into a realistic program synthesis system and provides knowledge
to use, modify, and extend Autobayes.

An extensive AutoBayes Users Manual can be found here.

Constraint-based synthesis with Sketch

This talk introduces an approach to synthesis based on combinatorial
search of a space of candidate programs guided by a set of constraints on
the shape and the behavior of the desired solution.

In this paradigm, the user describes a space of candidate implementations
by writing a partial program, a "program with holes" which leaves
unspecified those parts of the program that are too complex or error-prone
to write by hand. The partial program imposes constraints on the structure
of the desired solution, allowing the user to take control over certain parts
of the implementation while leaving others in the hands of the synthesizer.

In addition to the partial program, the user provides a set of constraints on
the behavior of the desired solution. These constraints can range from
simple assertions in the code, to unit tests, to reference implementations
whose behavior must be emulated by the synthesized code. The role of the
synthesizer is to combine the behavioral constraints with the structural
constraints imposed by the partial program, and to produce an
implementation that is consistent with both.

The lecture will describe the constraint-based synthesis paradigm as
implemented in the Sketch synthesis system. The first part will describe

Armando Solar-Lezama is an assistant
professor at the Massachusetts Institute of
Technology, where he leads the Computer
Aided Programming group. Before joining
MIT, he was a graduate student at Berkeley,
where he graduated with a PhD in the fall
of 2008.

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

7 von 10 16.08.11 15:52

constraint based synthesis from the user's perspective; in this part, students
will gain first-hand experience on the advantages and disadvantages of the
constraint-based approach to synthesis, and will learn about some of the
open problems in improving the usability of this form of synthesis. The
second part of the talk will dive into the details of the counterexample
guided inductive synthesis algorithm (CEGIS) as implemented in the
Sketch synthesizer. This part of the talk will describe some of the strengths
and weaknesses of the algorithm and potential opportunities for new
research to improve the scalability of the approach.

Synthesis and Abstract Interpretation

This talk will present a framework for synthesizing efficient
synchronization in concurrent programs, a task known to be difficult and
error-prone when done manually. The framework is based on abstract
interpretation and can infer synchronization for infinite state programs.
Given a program, a specification, and an abstraction, we infer
synchronization that avoids all (abstract) interleavings that may violate the
specification, but permits as many valid interleavings as possible. The
klecture will show application of this general idea for automatic inference
of atomic sections and memory fences in programs running over relaxed
memory models.

Prof. Eran Yahav Eran Yahav is a faculty member
of the Computer Science department at the
Technion, Israel. Prior to his position at Technion,
he was a Research Staff Member at the IBM T.J.
Watson Research Center in Hawthorne, New York
(2004-2010). He received his Ph.D. from Tel Aviv
University (2004) and his B.Sc. (cum laude) from the
Technion-Israel Institute of Technology (1996). His
research interests include static and dynamic
program analysis, program synthesis, and program

verification. Eran is a recipient of the prestigious Alon Fellowship for
Outstanding Young Researchers, and the Andre Deloro Career
Advancement Chair in Engineering.

Miscellaneous

This series of talks will introduce topics not covered by guest lecturers.
We will start with synthesis based on machine learning, specifically

Ras Bodik is an associate professor at UC
Berkeley, where he heads projects in
program synthesis and mobile web
browsers.

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

8 von 10 16.08.11 15:52

version space algebra, using SmartEdit of Tessa Lau et al and Quick Code
of Sumit Gulwani et al. Next we introduce rewrite-based synthesizers
FFTW of Frigo and the CMU Spiral, which have been used to produce
highly efficient linear filters. As an example of theorem-based synthesizer,
we will cover Nelson et al Denali. Finally, we will discuss what interactive
program synthesis might look like, using Angelic programming as an
example.

Schedule

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

9 von 10 16.08.11 15:52

schedule : summer school
Time Location Mon Tue Wed Thu Fri
7:30 - 8:45 restaurant breakfast breakfast breakfast breakfast breakfast

8:45 - 10:00 Introduction
(Ras) Eran Eran Viktor Vijay

10:00 - 10:30 classroom coffee break coffee break coffee break coffee break coffee break

10:30 - 12:00 Barbara Barbara Johann Johann Discussion
(Ras)

12:15 - 2:00 restaurant lunch lunch lunch lunch lunch

2:00 - 3:30 Armando Armando afternoon Armando and
Johann departure

3:30 - 4:00 restaurant coffee and cake coffee and cake outing to nearby coffee and cake

4:00 - 5:30 Viktor Vijay attraction Ras

6:00 - 7:30 restaurant dinner dinner dinner dinner

8:00 - tbd wine cellar
discussions;
AutoBayes
install help

Vernissage at
7:30; discuss.

discussions,
hands-on, etc

discussions,
hands-on, etc

summer school >
<

2011 Dagstuhl Summer School on Program Synthesis http://www.cs.berkeley.edu/~bodik/dagstuhl-2011.html

10 von 10 16.08.11 15:52

