
Figure 1: The experiment in [12] (reprinted from there): (a) shows the maze uniformly cov-
ered by Physarum; yellow color indicates presence of Physarum. Food (oatmeal) is provided
at the locations labeled AG. After a while the mold retracts to the shortest path connecting
the food sources as shown in (b) and (c). (d) shows the underlying abstract graph. The video
[15] shows the experiment.
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Girish Varma (TIFR), Michael Dirnberger (MPI-INF), and Andreas Karrenbauer (MPI-INF).

Nature computes; birds flock and the slime mold Physarum Polycephalum is apparently
able to solve shortest path problems and to construct good Steiner networks. Nakagaki,
Yamada, and Tóth [12] report about the following experiment; see Figure 1. They built a
maze, covered it by pieces of Physarum (the slime can be cut into pieces which will reunite
if brought into vicinity), and then fed the slime with oatmeal at two locations. After a few
hours the slime retracted to a path that follows the shortest path in the maze connecting the
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food sources. The authors report that they repeated the experiment with different mazes; in
all experiments, Physarum retracted to the shortest path. There are several videos available
on the web that show the mold in action [15].

The paper [13] proposes a mathematical model for the behavior of the slime and argues
extensively that the model is adequate. We will not repeat the discussion here but only define
the model. Physarum is modeled as an electrical network with time varying resistors. We
have a simple undirected graph G = (N,E) with distinguished nodes s0 and s1 modeling the
food sources. Each edge e ∈ E has a positive length Le and a positive diameter De(t); Le is
fixed, but De(t) is a function of time. The resistance Re(t) of edge e is Re(t) = Le/De(t). We
force a current of value 1 from s0 to s1. Let Qe(t) be the resulting current over edge e = (u, v),
where (u, v) is an arbitrary orientation of e. The diameter of edge e evolves according to the
equation

Ḋe(t) = |Qe(t)| −De(t), (1)

where Ḋe is the derivative of De with respect to time. In equilibrium (Ḋe = 0 for all e),
the flow through any edge is equal to its diameter. In non-equilibrium, the diameter grows
(shrinks) if the absolute value of the flow is larger (smaller) than the diameter. In the sequel,
we will mostly drop the argument t as is customary in the treatment of dynamical systems.

The model is readily turned into a computer simulation. Tero et al. [13] were the first
to perform such simulations. They report that the network always converges to the shortest
s0-s1 path, i.e., the diameters of the edges on the shortest path converge to one and the
diameters on the edges outside the shortest path converge to zero. This holds true for any
initial condition. It assumes uniqueness of the shortest path. Miyaji and Ohnishi [10, 9]
initiated the analytical investigation of the model. They argued convergence against the
shortest path if G is a planar graph and s0 and s1 lie on the same face in some embedding of
G.

In [4], we proved convergence for all graphs. In [3], we proved convergence of the dis-
cretization.

Why should CS care? Physarum is an example of a natural computer, i.e., a computer
developed by evolution over millions of years. It apparently can do more than computing
shortest paths. In [14] the computational capabilities of Physarum are applied to network
design and it is shown in lab and computer experiments that Physarum can compute approx-
imate Steiner trees; see 2 for an example. However, no theoretical explanation is available.
We [7, 8] are currently trying to find one. The book [1] and the tutorial [11] contain many
illustrative examples of the computational power of this slime mold.

Chazelle [5] advocates the study of natural algorithms; i.e., “algorithms developed by evo-
lution over millions of years”, using computer science techniques. Traditionally, the analysis
of such algorithms was the domain of biology, systems theory, and physics. Computer sci-
ence brings new tools. For example, in our analysis, we crucially use the max-flow min-cut
theorem.

Natural algorithms can also give inspiration for the development of new combinatorial
algorithms. A good example is [6] where electrical flows are essential for an approximation
algorithm for undirected network flow.
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[12] T. Nakagaki, H. Yamada, and A. Tóth. Maze-solving by an amoeboid organism. Nature,
407:470, 2000.

[13] A. Tero, R. Kobayashi, and T. Nakagaki. A mathematical model for adaptive transport
network in path finding by true slime mold. Journal of Theoretical Biology, pages 553–
564, 2007.

[14] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. Bebber, M. Fricker, K. Yumiki, R. Kobayashi,
and T. Nakagaki. Rules for biologically inspired adaptive network design. Science,
327:439–442, 2010.

[15] http://www.youtube.com/watch?v=tLO2n3YMcXw&t=4m43s.

3

http://arxiv.org/abs/1106.0423
http://www.youtube.com/watch?v=tLO2n3YMcXw&t=4m43s


Figure 2: Physarum connects major cities on the German map. Reprinted from [2].
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