December 14 – 19 , 2014, Dagstuhl Seminar 14511

Programming Languages for Big Data (PlanBig)


James Cheney (University of Edinburgh, GB)
Torsten Grust (Universität Tübingen, DE)
Dimitrios Vytiniotis (Microsoft Research UK – Cambridge, GB)

1 / 2 >

For support, please contact

Dagstuhl Service Team


Dagstuhl Report, Volume 4, Issue 12 Dagstuhl Report
Aims & Scope
List of Participants
Shared Documents


Large-scale data-intensive computing, commonly referred to as "Big Data", has been influenced by and can further benefit from programming languages ideas. The MapReduce programming model is an example of ideas from functional programming that has directly influenced the way distributed big data applications are written. As the volume of data has grown to require distributed processing potentially on heterogeneous hardware, there is need for effective programming models, compilation techniques or static analyses, and specialized language runtimes. The motivation for this seminar has been to bring together researchers working on foundational and applied research in programming languages but also data-intensive computing and databases, in order to identify research problems and opportunities for improving data-intensive computing.

To this extent, on the database side, the seminar included participants who work on databases, query languages and relational calculi, query compilation, execution engines, distributed processing systems and networks, and foundations of databases. On the programming languages side, the seminar included participants who work on language design, integrated query languages and meta-programming, compilation, as well as semantics. There was a mix of applied and foundational talks, and the participants included people from universities as well as industrial labs and incubation projects.

The work that has been presented can be grouped in the following broad categories:

  • Programming models and domain-specific programming abstractions (Cheney, Alexandrov, Vitek, Ulrich). How can data processing and query languages be integrated in general purpose languages, in type-safe ways and in ways that enable traditional optimizations and compilation techniques from database research? How can functional programming ideas such as monads and comprehensions improve the programmability of big data systems? What are some language design issues for data-intensive computations for statistics?
  • Incremental data-intensive computation (Acar, Koch, Green). Programming language support and query compilation techniques for efficient incremental computation for data set or query updates. Efficient view maintainance.
  • Interactive and live programming (Green, Vaz Salles, Stevenson, Binnig, Suciu). What are some challenges and techniques for interactive applications. How to improve the live programming experience of data scientists? Ways to offer data management and analytics as cloud services.
  • Query compilation (Neumann, Henglein, Rompf, Ulrich). Compilation of data processing languages to finite state automata and efficient execution. Programming languages techniques, such as staging, for enabling implementors to concisely write novel compilation schemes.
  • Data programming languages and semantics (Wisnesky, Vansummeren). Functorial semantics for data programming languages, but also foundations for languages for information extraction.
  • Foundations of (parallel) query processing (Suciu, Neven, Hidders). Communication complexity results, program equivalence problems in relational calculi.
  • Big data in/for science (Teubner, Stoyanovich, Ré). Challenges that arise in particle physics due to the volume of generated data. Howe we can use data to speed up new material discovery and engineering? How to use big data systems for scientific extraction and integration from many different data sources?
  • Other topics: architecture and runtimes (Ahmad), coordination (Foster), language runtimes (Vytiniotis), weak consistency (Gotsman).

The seminar schedule involved three days of scheduled talks, followed by two days of free-form discussions, demos, and working groups. This report collects the abstracts of talks and demos, summaries of the group discussion sessions, and a list of outcomes resulting from the seminar.

  Creative Commons BY 3.0 Unported license
  James Cheney and Torsten Grust and Dimitrios Vytiniotis


  • Data Bases / Information Retrieval
  • Programming Languages / Compiler
  • Security / Cryptology


  • High-performance computing
  • Data-intensive research
  • Language-integrated query
  • Language-based security

Book exhibition

Books from the participants of the current Seminar 

Book exhibition in the library, ground floor, during the seminar week.


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.