http://www.dagstuhl.de/13121

### March 17 – 22 , 2013, Dagstuhl Seminar 13121

# Bidimensional Structures: Algorithms, Combinatorics and Logic

## Organizers

Erik D. Demaine (MIT – Cambridge, US)

Fedor V. Fomin (University of Bergen, NO)

MohammadTaghi Hajiaghayi (University of Maryland – College Park, US)

Dimitrios M. Thilikos (University of Athens, GR)

## For support, please contact

## Documents

Dagstuhl Report, Volume 3, Issue 3

Aims & Scope

List of Participants

Shared Documents

Dagstuhl's Impact: Documents available

Dagstuhl Seminar Schedule [pdf]

## Summary

The monumental Graph Minors project developed by Robertson and Seymour in the 1980s is one of the most fundamental achievements of Combinatorics. The project had several groundbreaking consequences for Theoretical Computer Science. However, the wide spread opinion in the algorithmic community, expressed by David S. Johnson in his NP-Completeness Column (J. Algorithms 1987), was that it is mainly of theoretical importance. It took some time to realize that the techniques developed in Graph Minors can be used in the design of efficient and generic algorithms. One of the main techniques extracted from Graph Minors is based on the structural results explaining the existence (or the absence) of certain grid-like or bidimensional structures in graphs. The usage of bidimensional structures and the related width parameters in many areas of Computer Science and Combinatorics makes such techniques ubiquitous.

Historically, the first applications of bidimensional structures are originated in Graph Minors of Robertson and Seymour, because of the structure of the graphs excluding some fixed some graph as a minor. There is still an on-going work in Combinatorics on obtaining new structural theorems. There are much more examples in Combinatorics, where bidimensional structures and width parameters play a crucial role like in obtaining Erdös-Posa type of results. Reed used bidimensional structures to settle Erdös-Hajnal conjecture on near-bipartite graphs. Kawarabayashi and Reed used bidimensional structures to bound the size of a minimal counterexample to Hadwiger's conjecture. Demaine and Hajiaghayi optimized the original grid-exclusion theorem on H-minor free graphs.

The usage of bidimensional structures and width parameters in Algorithms goes back to the parameter of treewidth, introduced in the Graph Minors series. Treewidth is now ubiquitous in algorithm design and expresses the degree of topological resemblance of a graph to the structure of a tree. Its algorithmic importance dates back in the early 90's to the powerful meta-algorithmic result of Courcelle asserting that all graph problems expressible in Monadic Second Order Logic can be solved in linear time on graphs of bounded treewidth. Bounded treewidth can be guarantied by the exclusion of certain bidimensional structures. Intuitively, this exclusion is what enables the application of a series of classic algorithmic techniques (divide-and-conquer, dynamic programming, finite automata) for problems of certain descriptive complexity. This phenomenon was perhaps the first strong indication of the deep interleave between graph structure and logic in graph algorithms. However, a deeper understanding of it became more evident during the last decade and produced powerful meta-algorithmic techniques.

Apparently, graph-theoretic fundamentals emerging from the Graph Minors project developed by Robertson and Seymour, are used currently in several areas of Computer Science and Discrete Mathematics. Algorithmic fertilization of these ideas occurred mostly in the context of parameterized complexity and its foundational links to logic. The course of developing a structural algorithmic graph theory revealed strong connections between Graph Theory, Algorithms, Logic, and Computational Complexity and joined a rapidly developing community of researchers from Theoretical Computer Science and Discrete Mathematics.

Dagstuhl seminar 13121 brought together some of the most active researchers on this growing field.

**License**

Creative Commons BY 3.0 Unported license

Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos

## Related Dagstuhl Seminar

## Classification

- Data Structures
- Algorithms
- Complexity / Verification
- Logic

## Keywords

- Algorithms
- Graph Minors
- Treewidth
- Grids