February 3 – 8 , 2013, Dagstuhl Seminar 13061

Fault Prediction, Localization, and Repair


Mary Jean Harrold (Georgia Institute of Technology – Atlanta, US)
Friedrich Steimann (Fernuniversität in Hagen, DE)
Frank Tip (University of Waterloo, CA)
Andreas Zeller (Universität des Saarlandes, DE)

1 / 2 >

For support, please contact

Dagstuhl Service Team


Dagstuhl Report, Volume 3, Issue 2 Dagstuhl Report
Aims & Scope
List of Participants
Shared Documents


Even today, an unpredictable part of the total effort devoted to software development is spent on debugging, i.e., on finding and fixing bugs. This is despite the fact that powerful static checkers are routinely employed, finding many bugs before a program is first executed, and also despite the fact that modern software is often assembled from pieces (libraries, frameworks, etc.) that have already stood the test of time. In fact, while experienced developers are usually quick at finding and fixing their own bugs, they too spend too much time with fixing the interplay of components that have never been used in combination before, or just debugging the code of others. Better automated support for predicting, locating, and repairing bugs is therefore still required.

Due to the omnipresence of bugs on the one side and the vastly varying nature of bugs on the other, the problems of fault prediction, localization, and repair have attracted research from many different communities, each relying on their individual strengths. However, often enough localizing a bug resembles the solution of a criminal case in that no single procedure or evidence is sufficient to identify the culprit unambiguously. It is therefore reasonable to expect that the best result can only be obtained from the combination of (insufficient) evidence obtained by different, and ideally independent, procedures. One main goal of this seminar is therefore to connect the many different strands of research on fault prediction, localization, and repair.

For researchers it is not always obvious how debugging is embedded in the software production process. For instance, while ranking suspicious program statements according to the likelihood of their faultiness may seem like a sensible thing to do from a research perspective, programmers may not be willing to look at more than a handful of such locations when they have their own inkling of where a bug might be located. On the other hand, commercial programmers may not be aware of the inefficiency of their own approaches to debugging, for which promising alternatives have been developed by academics. Bringing together these two different perspectives is another goal of this seminar.

Last but not least, the growing body of open source software, and with it the public availability of large regression test suites, provide unprecedented possibilities for researchers to evaluate their approaches on industrial-quality benchmarks. In fact, while standard benchmarks such as the so-called Siemens test suite still pervade the scientific literature on debugging, generalization of experimental results obtained on such a small basis is more than questionable. Other disciplines, such as the model checking or the theorem proving communities, have long established competitions based on open benchmarks to which anyone can submit their problems. Based on such benchmarks, progress would be objectively measurable, and advances in research would be better visible. It is another goal of this seminar to establish a common understanding for the need of such benchmarks, and also to initiate the standards necessary for installing them.

  Creative Commons BY 3.0 Unported license
  Mary Jean Harrold and Friedrich Steimann and Frank Tip and Andreas Zeller


  • Programming Languages/compiler
  • Sw-engineering
  • Verification/logic


  • Program analysis
  • Automated debugging
  • Fault prediction
  • Fault repair
  • Fault localization
  • Statistical debugging
  • Change impact analysis

Book exhibition

Books from the participants of the current Seminar 

Book exhibition in the library, ground floor, during the seminar week.


In the series Dagstuhl Reports each Dagstuhl Seminar and Dagstuhl Perspectives Workshop is documented. The seminar organizers, in cooperation with the collector, prepare a report that includes contributions from the participants' talks together with a summary of the seminar.


Download overview leaflet (PDF).


Furthermore, a comprehensive peer-reviewed collection of research papers can be published in the series Dagstuhl Follow-Ups.

Dagstuhl's Impact

Please inform us when a publication was published as a result from your seminar. These publications are listed in the category Dagstuhl's Impact and are presented on a special shelf on the ground floor of the library.