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2 Overview of Talks

2.1 Discrete Morse theory and persistent homology of geometric
complexes

Ulrich Bauer (TU München, DE)

I will discuss the interplay between geometry and topology, and between Morse theory and
persistent homology, in the setting of geometric complexes. This concerns constructions
like Rips, Čech, Delaunay, and Wrap complexes, which are fundamental construction in
topological data analysis. The tandem of Morse theory and homology shows the topological
equivalence of several of these constructions, helps in speeding up their computation by a huge
factor (in the software Ripser), reveals thresholds at which homology necessarily vanishes
(with links to a classical result by Rips and Gromov), and relates optimal representative
cycles for persistent homology to the industry-tested Wrap reconstruction algorithm.

2.2 (Discrete) Morse Theory and Reconstruction
Julian Brüggemann (Universität Bonn, DE)

Morse theory and its discrete version are well established toolboxes in pure topology. They
both serve a similar purpose: use the combinatorics of the real numbers via well-behaved real-
valued functions to compute topological invariants of geometric objects. In some instances,
certain collections of topological invariants allow for a complete classification of the given
class of spaces, which in turn might allow for a reconstruction of the original objects from
the computed collection of invariants, most time up to some suitable notion of equivalence.
In this talk, I will give a brief overview over smooth and discrete Morse theory and mention
some classification/reconstruction results in topology and visualization that might also be
useful in data analysis.

2.3 A Statistical Perspective on Multiparameter Persistent Homology
Mathieu Carrière (Centre Inria d’Université Côte d’Azur - Sophia Antipolis, FR)

Multiparameter persistent homology is a generalization of persistent homology that allows for
more than a single filtration function. Such constructions arise naturally when considering
data with outliers or variations in density, time-varying data, or functional data. Even
though its algebraic roots are substantially more complicated, several new invariants have

24092



4 24092 – Applied and Combinatorial Topology

been proposed recently. In this talk, I will go over such invariants, as well as their stability,
vectorizations and implementations in statistical machine learning.

2.4 Computational Topology for Zigzag Persistence
Tamal K. Dey (Purdue University - West Lafayette, US)

In topological data analysis, zigzag persistence has become an important component because
it enhances the applicability of persistence theory by allowing both insertions and deletions
of simplices in a simplicial filtration. Such filtrations occur in applications where a space
or a function on it changes over time. For example, in network analysis, new connections
appear and existing connections disappear over time. The standard persistence algorithm for
non-zigzag filtrations does not work for the zigzag case. After laying out the background and
earlier work on computations of zigzag persistence, we present a new algorithm FastZigzag
for computing zigzag persistence from an input filtration. We follow it with the discussion of
the well known vineyard problem in the zigzag case. We present a recent efficient algorithm
for computing the zigzag vineyard. Akin to the non-zigzag case, the special but important
case of graphs allow certain optimizations that make the computations of zigzag barcode and
their vineyards more efficient. We go over some of these developments. Finally, we indicate
some of the applications of zigzag persistence, in particular to data analysis in TDA with
multiparameter persistence.

2.5 Hypergraph Barcodes: a way to Link two Different Notions of
Hypergraph Homology

Robert Green (University at Albany, US)

Hypergraphs are a natural data structure to consider when studying networks with multiway
connections. One approach to characterizing the features of these networks involves defining
a form of hypergraph homology and then leveraging these homological traits to delineate the
hypergraphs. There are many different ways however to define hypergraph homology and
different approaches yield different types of features. In this talk I will present two different
approaches to this problem and then connect them by presenting a persistence module they
both live inside of.

2.6 Merge Tree for Periodic Data
Teresa Heiss (Institute of Science and Technology Austria, AT)

Periodic data is abundant in material science, for example the atoms of a crystalline material
repeat periodically. Additionally, periodic boundary conditions are used in many further
applications, for example in cosmology, to remove boundary effects. It is unclear how to deal
with the periodicity of the data when computing topological descriptors, like the merge tree
or persistent homology. A classical approach is to compute the respective descriptor simply
on the torus. However, this does not give the information needed for many applications and
is in some sense even unstable under noise. Therefore, we suggest decorating the periodic
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merge tree gained from the torus with additional information, describing for each connected
component how many components of the infinite periodic covering space map to it. The
resulting periodic merge tree carries the desired information and fulfills all the desired
properties, in particular: stability and efficient computability.

2.7 When Do Two Distributions Yield the Same Expected Euler
Characteristic Curve in the Thermodynamic Limit

Niklas Hellmer (Polish Academy of Science, PL)

Joint work of Hellmer, Niklas; Fleckenstein, Tobias
Main reference Hellmer, Niklas; Fleckenstein, Tobias, When Do Two Distributions Yield the Same Expected Euler

Characteristic Curve in the Thermodynamic Limit?, ArXiv, 2024.
URL https://arxiv.org/abs/2401.04580

Given a probability distribution F on Rd with density f , consider a sample Xn of n points
sampled from F i.i.d.. We study the Euler characteristic curve (ECC) of the union of balls⋃
x∈Xn

Brn
(x) in the thermodynamic limit. That is, as n → ∞, we let rn → 0 such that

nrd
n approaches a finite, non-zero limit. It turns out that two distributions yield the same

expected ECC in this setting if and only if they have the same excess mass. Whether this
condition is also necessary for the distributions of the ECCs to coincide in the limit remains
an open question.

2.8 Magnitude, Alpha Magnitude and Applications
Sara Kalisnik (ETH Zürich – Zürich, CH)

Joint work of Kalisnik, Sara; O’Malley, Miguel; Otter, Nina

Magnitude is an isometric invariant for metric spaces that was introduced by Leinster around
2010, and is currently the object of intense research, since it has been shown to encode
many known invariants of metric spaces. In recent work, Govc and Hepworth introduced
persistent magnitude, a numerical invariant of a filtered simplicial complex associated to a
metric space. Inspired by Govc and Hepworth’s definition, we introduced alpha magnitude.
Alpha magnitude presents computational advantages over both magnitude as well as Rips
magnitude, and is thus an easily computable new measure for the estimation of fractal
dimensions of real-world data sets.

2.9 Multi-parameter persistence is practical
Michael Kerber (TU Graz, AT)

I will present some recent advances from our group at TU Graz that allow us to handle much
larger bifiltered data sets with a computational pipeline than what was possible before.
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2.10 The discriminating power of the generalized rank invariant
Woojin Kim (Duke University - Durham, US & KAIST - Daejeon, KR)

Joint work of Kim, Woojin; Clause, Nathaniel; Mémoli, Facundo
Main reference Clause,Nate; Kim, Woojin; Memoli, Facundo, The discriminating power of the generalized rank

invariant, arXiv, 2023
URL https://arxiv.org/abs/2207.11591

In topological data analysis, the rank invariant is one of the best known invariants of
persistence modules over posets. The rank invariant of a persistence module M over a given
poset P is defined as the map that sends each comparable pair p ≤ q in P to the rank of the
linear map M(p ≤ q). The recently introduced notion of generalized rank invariant acquires
more discriminating power than the rank invariant at the expense of enlarging the domain of
rank invariant to a collection I of intervals of P that contains all segments of P . In this talk,
we discuss the tension that exists between computational efficiency and the discriminating
power of the generalized rank invariant, depending on its domain I. The Möbius inversion
formula will assume a significant role in clarifying the discriminating power, even in cases
where the domain I is not locally finite. Along the way, we show that the possibility of
encoding the generalized rank invariant of M over a non-locally-finite I into a multiset of
signed intervals of P depends on how "tame" M is. Such a multiset, if it exists, is obtained
via Möbius inversion of the generalized rank invariant over a suitable locally finite subset of
I.

2.11 Barcodes for the topological analysis of gradient-like vector fields
Claudia Landi (University of Modena and Reggio Emilia, IT)

Joint work of Bannwart, Clemens; Landi, Claudia
Main reference Bannwart, Clemens; Landi Claudia, Barcodes for the topological analysis of gradient-like vector

fields, arXiv, 2024
URL https://arxiv.org/abs/2401.08466

Intending to introduce a method for the topological analysis of fields, we present a pipeline
that takes as an input a weighted and based chain complex, produces a tame epimorphic
parametrized chain complex, and encodes it as a barcode of tagged intervals. We show
how to apply this pipeline to the weighted and based chain complex of a gradient-like
Morse-Smale vector field on a compact Riemannian manifold in both the smooth and discrete
settings. Interestingly for computations, it turns out that there is an isometry between
tame epimorphic parametrized chain complexes endowed with the interleaving distance and
barcodes of tagged intervals endowed with the bottleneck distance. Concerning stability, we
show that the map taking a generic enough gradient-like vector field to its barcode of tagged
intervals is continuous. Finally, we prove that the barcode of any such vector field can be
approximated by the barcode of a combinatorial version of it with arbitrary precision.

2.12 Challenges in two- and multi-parameter persistent cohomology
Fabian Lenzen (TU Berlin, DE)

In the last years, research in persistent homology has started to focus on multi-parameter
persistent homology, which studies the homology of a space filtered by multiple parameters
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independently. For example, this can be used to overcome the notorious susceptibility of
persistent homology to outliers, to deal with data sats of inhomogeneous density, or to study
filtration types that rely on more than one parameter.

Computing multi-parameter persistent homology is challenging, both algebraically and
algorithmically. In particular, current software is orders of magnitudes slower than common
software for one-parameter persistence.

We will discover why persistent cohomology—a key ingredient in the efficiency of one-
parameter persistence software—is inherently more difficult in multi-parameter persistence,
how this is dealt with in the software package 2pac, and what problems still remain.

2.13 Models of Subdivision Bifiltrations
Michael Lesnick (University at Albany – New York, US)

Joint work of Lesnick, Michael; McCabe, Kevin

We study the size of Sheehy’s subdivision bifiltrations, up to homotopy. We focus in particular
on the subdivision-Rips bifiltration SR, the only density-sensitive bifiltration on metric spaces
known to satisfy a strong robustness property. Given a simplicial filtration F with a total of
m maximal simplices across all indices, we introduce a simplicial model for its subdivision
bifiltration SF whose k-skeleton has size O(mk+1). We also show that the 0-skeleton of
any simplicial model of SF has size at least m. We give several applications: For arbitrary
metric spaces, we introduce a

√
2-approximation to SF with poly-size skeleta, improving on

the previous best approximation bound of
√

3. Moreover, we show that the approximation
factor of

√
2 is tight; in particular, there exists no exact model of SR with poly-size skeleta.

On the other hand, we show that for data in a fixed-dimensional Euclidean space with the
ℓp-metric, there exists an exact model of SR with poly-size skeleta for p ∈ {1, ∞}, as well as
a (1 + ϵ)-approximation to SR with poly-size skeleta for any p ∈ (1, ∞) and fixed ϵ > 0.

2.14 Large Simple d-Cycles in Simplicial Complexes
Roy Meshulam (Technion - Haifa, IL)

Joint work of Meshulam, Roy; Newman, Ilan; Rabinovich, Yuri

Let G = (V, E) be a finite simple graph. A classical result of Erdos and Gallai asserts that
if |E| > k(|V |−1)

2 , then G contains a simple cycle of length > k. We study the analogous
question for higher dimensional simplicial complexes. A set {σ1, . . . , σk} of d-dimensional
simplices in a simplicial complex X is a simple d-cycle over a field F if {∂σ1, . . . , ∂σk} is
a minimal linearly dependent set in the space of d-chains Cd(X; F ). Let fi(X) denote the
number of i-dimensional simplices in X. It is shown that any d-dimensional X contains a
simple d-cycle of size

k ≥

√
2fd(X)

(d + 1)fd−1(X) − 1.
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2.15 Bounding the Interleaving Distance for Mapper Graphs with a Loss
Function

Elizabeth Munch (Michigan State University, US)

Data consisting of a graph with a function to Rd arise in many data applications, encompassing
structures such as Reeb graphs, geometric graphs, and knot embeddings. As such, the ability
to compare and cluster such objects is required in a data analysis pipeline, leading to a need
for distances or metrics between them. In this work, we study the interleaving distance on
discretizations of these objects, Rd-mapper graphs, where functor representations of the data
can be compared by finding pairs of natural transformations between them. However, in
many cases, computation of the interleaving distance is NP-hard. For this reason, we take
inspiration from the work of Robinson to find quality measures for families of maps that do not
rise to the level of a natural transformation, called assignments. We then endow the functor
images with the extra structure of a metric space and define a loss function which measures
how far an assignment is from making the required diagrams of an interleaving commute.
Finally we show that the computation of the loss function is polynomial. We believe this
idea is both powerful and translatable, with the potential to be used for approximation and
bounds on interleavings in a broad array of contexts.

2.16 Topologically Attributed Graphs
Thomas Needham (Florida State University - Tallahassee, US)

Joint work of Needham; Curry; Mio; Okutan; Russold

I will describe recent work with Curry, Mio, Okutan and Russold which fuses graphical
and persistence invariants of datasets. The basic idea is to attribute the nodes of a Reeb
or Mapper graph of a dataset with persistence diagrams, which encode localized, higher-
dimensional homological features of the data. These enriched graphical summaries can be
used, for example, as inputs to a graph neural network for shape classification tasks. I will
also discuss the (fairly subtle) theoretical stability properties of these invariants.

2.17 Directed paths and duality
Martin Raussen (Aalborg University, DK)

An important class of Higher Dimensional Automata (HDA) in concurrency theory arises
from semaphore protocols or PV-programs originally described by Dijkstra. In order to
understand their behaviour, one must analyse the space of all schedules (directed paths)
between (any) start and end state. How can one translate the orders of lock and unlock
commands into a recipe describing this space?

By definition, the space of allowed directed paths is an intersection (limit) of elementary
spaces – each having the homotopy type of a sphere – in the infinite-dimensional space of
all directed paths. There is a homotopy equivalence embedding the (allowed) paths as a
configuration space into a finite-dimensional sphere. The complement of this configuration
space in that sphere is a union (colimit) of elementary spaces. Its topology can therefore be
described as the homotopy colimit of certain spaces for which we have a “low-dimensional”
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description arising directly from the PV-encoding. In favourable cases, this homotopy colimit
can be described explicitly. Alexander duality allows then to determine the homology of the
complement, and hence of the space of all allowed directed paths.

2.18 From Coarse to Fine and Back Again: Geometry and Topology in
Machine Learning

Bastian Grossenbacher-Rieck (Helmholtz Zentrum München, DE)

A large driver contributing to the success of deep learning models is their ability to synthesise
task-specific features from data. For a long time, the predominant belief was that ‘given
enough data, all features can be learned.’ However, it turns out that certain tasks require
imbuing models with inductive biases such as invariances that cannot be readily gleaned
from the data! This is particularly true for data sets that model real-world phenomena,
creating a crucial need for different approaches. This talk will present novel advances in
harnessing multi-scale geometrical and topological characteristics of data. I will particularly
focus on how geometry and topology can improve (un)supervised representation learning
tasks. Underscoring the generality of a hybrid geometrical-topological perspective, I will
furthermore showcase applications from a diverse set of data domains, including point clouds,
graphs, and higher-order combinatorial complexes.

2.19 Overview of Discrete Morse Theory
Nick Scoville (Ursinus College - Collegeville, US);
Leonard Wienke (Universität Bremen, DE)

This Overview of Discrete Morse Theory is two-fold.
In the first part, we give an introduction to the basic concepts of Discrete Morse Theory.

In particular, we discuss the equivalence of simplicial collapses, acyclic matchings, and poset
maps with small fibers. We then define the Morse complex that computes simplicial homology
and consider examples.

In the second part, we discuss open problems as well as newer directions of research.
We will look at open problems in both random Discrete Morse Theory and the complex of
discrete Morse functions. We will then survey several variations of Discrete Morse Theory,
inluding stratified and Bestvina-Brady, which may prove useful in simplifying a complex.

2.20 Combinatorial Topological Models for Phylogenetic Reconstruction
Networks

Jan F Senge (Universität Bremen, DE, Polish Academy of Science, PL)

Joint work of Dłotko, Pawel; Senge, Jan; Stefanou, Anastasios
Main reference Dłotko Paweł, Senge JF, Stefanou Anastasios (2023) Combinatorial Topological Models for

Phylogenetic Networks and the Mergegram Invariant. arXiv preprint arXiv:2305.04860.
URL https://arxiv.org/abs/2305.04860

Phylogenetic networks are vital for understanding complex evolutionary processes, where
traditional tree-like structures fall short. The application of topological data analysis (TDA)
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has emerged as a powerful approach for exploring such networks, revealing underlying
geometric and topological structures. This talk focuses on a lattice theoretical approach
of representing such networks and relating them to TDA. We will discuss the applications
of TDA techniques in analyzing phylogenetic networks, aiming to uncover hidden patterns
and gain deeper insights into their evolutionary dynamics. Additionally, we introduce the
facegram, a simplicial lattice model that generalizes the dendrogram model for phylogenetic
trees, which enables an alternative way to visualize filtrations of complexes, and show some
more recent applications of these ideas and connections.

2.21 Reeb Graphs and Their Variants: Theory and Applications
Bei Wang Phillips (University of Utah - Salt Lake City, US)

A Reeb graph is a graphical representation of a scalar function on a topological space that
encodes the topology of the level sets. Reeb graphs and their variants are popular tools
in topological data analysis and visualization. As an overview talk for TDA+statistics, I
will review theoretical advances in studying Reeb graphs and their variants, as well as their
applications in data mining and machine learning.

2.22 Persistent cup modules
Ling Zhou (Ohio State University - Columbus, US)

One-dimensional persistent homology is arguably the most important and heavily used
computational tool in topological data analysis. Additional information can be extracted
from datasets by studying multi-dimensional persistence modules and by utilizing cohomo-
logical ideas, e.g. the cohomological cup product. In this work, given a single parameter
filtration, we investigate a certain 2-dimensional persistence module structure associated with
persistent cohomology, where one parameter is the cup-length and the other is the filtration
parameter. This new persistence structure, called the persistent cup module, is induced by
the cohomological cup product and adapted to the persistence setting. Furthermore, we
show that this persistence structure is stable. By fixing the cup-length parameter, we obtain
a 1-dimensional persistence module and again show it is stable in the interleaving distance
sense, and study their associated generalized persistence diagrams. This is a joint work with
F. Mémoli and A. Stefanou.
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