TOP
Search the Dagstuhl Website
Looking for information on the websites of the individual seminars? - Then please:
Not found what you are looking for? - Some of our services have separate websites, each with its own search option. Please check the following list:
Schloss Dagstuhl - LZI - Logo
Schloss Dagstuhl Services
Seminars
Within this website:
External resources:
  • DOOR (for registering your stay at Dagstuhl)
  • DOSA (for proposing future Dagstuhl Seminars or Dagstuhl Perspectives Workshops)
Publishing
Within this website:
External resources:
dblp
Within this website:
External resources:
  • the dblp Computer Science Bibliography


Dagstuhl Seminar 20172

Representing and Solving Spatial Problems Postponed

( Apr 19 – Apr 24, 2020 )

Permalink
Please use the following short url to reference this page: https://www.dagstuhl.de/20172

Replacement
Dagstuhl Seminar 21492: Representing and Solving Spatial Problems (2021-12-05 - 2021-12-10) (Details)

Organizers

Contact

Schedule

Motivation

Everyday life takes place in space and time, and spatial experience lies at the heart of our existence. Understanding how we conceive of spatial relationships, and how we solve spatio-temporal problems, is therefore key to understanding human cognition. Spatial cognition research has advanced considerably over the past decades, with major successes particularly in computational implementations of knowledge representation and reasoning methods. Still, a range of key issues continue to pose major challenges. The goal of this seminar is to discuss the various options for the formalisation, implementation, and automated solution of spatial problems including the following issues: the identification and specification of relevant concepts as expressed in human language; the development of a module for automated understanding of domain descriptions; the use of spatial structures and affordances for direct spatial problem solving; and, the development of an efficient planning system capable of providing feasible solutions to spatial problems. In this context, this Dagstuhl Seminar is going to address four major themes:

  1. Conceptualisation. How do humans conceptualise and mentally represent spatial problems? What is the role of high-level spatio-temporal structures for perceiving spatial problems, for manipulating spatial configurations, and for commonsense spatial problem solving? 

  2. Formalisation. What would be a suitable formalism for commonsense problem solving that allows an accurate, flexible, and readable knowledge representation for spatio-temporal effects of actions performed by an intelligent agent? 

  3. Description. In contrast to the formal representation investigated on Item 2, the present topic deals with the development of human readable descriptions of the inputs, reasoning steps and solutions of spatial problems. In particular, we want to investigate whether (and to what extent) it would be possible to develop high-level representations or interfaces for dealing with natural language and/or diagrammatic constructions that allow specifying both the input knowledge and the output conclusions in terms of descriptions of spatial problems. 

  4. Problem solving. What are the commonsense problem-solving capabilities involving spatio-temporal features including temporal explanation and planning under physical/geometric qualitative or semi-quantitative constraints? This issue also includes the investigation of appropriate problem-solving algorithms and their potential applications to real-world domains that could be of interest to industry.
Copyright Pedro Cabalar, Christian Freksa, Paulo E. Santos, and Thora Tenbrink

Participants
  • Pedro Cabalar (University of Coruña, ES) [dblp]
  • Christian Freksa (Universität Bremen, DE) [dblp]
  • Paulo E. Santos (Flinders University - Adelaide, AU) [dblp]
  • Thora Tenbrink (Bangor University, GB) [dblp]

Classification
  • artificial intelligence / robotics
  • modelling / simulation
  • semantics / formal methods

Keywords
  • Knowledge representation
  • Problem Solving
  • Spatial Reasoning
  • Language analysis and cognitive processes